
Publication Pending
Author: Dr. Ami Gates
Date: 8/11/2016
All material is subject to copy write laws. Do not post, print, or reproduce without written permission.

Chapter 4: Loops and Decisions

Loops structures, such as the for loop, the while loop, and many others, can be found in

most high level programming languages. Loops (or repeating code statements) allows for a group

of code to complete the same type of task (possibly with different inputs or values each time)

until a given goal or job is done. Repeating is as common in programming as it is in everyday

life. As an odd, but true example, I drink my morning coffee in a loop. Once I am sitting in front

of my coffee, I reach over, pick it up by the handle, sip some, make an “mmmmm” sound, and

put it back on the table. I repeat these steps until the coffee is done. Humans and programs

require the option to repeat or loop.

Decision structures, such as if/elif/else, allow code to make decisions and then enact

given behaviors based on those decisions. In programming, decisions must be deterministic. In

other words, it must be logically possible for the computer to determine which decision to make.

It is not possible (yet) for computers to decide for themselves completely. Even though there are

methods that might simulate decision making, they are still deterministic.

The following sections will review and offer examples for loop and decision structures, as well

as flowcharts.

4.1: For/in Loops

It is often the case, when writing a program, that sections of code need to be repeated, such as

collecting the first and last names of many people, or calculating the factorial of a number. One

of the most commonly used looping structures is the for/in loop. The for/in loop is very

versatile in Python and can loop through lists, names, variables, ranges, and other structures.

The for/in loop for lists has the following basic syntax:

 for <variable name> in <list>:

 <statements>

Example 4.1.1: The for/in loop and a list.

The following small program illustrates the syntax and a utilization of the for/in loop structure.

ForInLoopChapter4.py

by Ami Gates

This code offers an example of the for/in loop structure

def main():

 for k in [1, 2, 3, 4]:

Publication Pending
Author: Dr. Ami Gates
Date: 8/11/2016
All material is subject to copy write laws. Do not post, print, or reproduce without written permission.

 print(k)

main ()

The output for this program is the following:

 1

 2

 3

 4

There are a few things to note here. First, the function used in this program is called main().

The main()function in any program is generally considered the main focus or starting point for

the overall program. Other functions can be called from main(), and main()can control the

overall order of execution (the flow) of the program.

The above program would have worked correctly no matter what name was used for the

function. In other words, the function main()could have been SomeFunctionName()

instead. However, for reasons not yet discussed, it is best to use main()as the primary function

of a program.

Next, notice the for/in loop. The variable named k is used to hold each value in the given list

of values. In other words, k will equal 1 first and all following lines of code will execute with k

having the value of 1. Next, k will equal 2, and all following lines of code will execute with k

having the value of 2. The same is true for 3, and finally 4. Because the only statement in the

body of the for/in loop is a print statement, each value of k is printed as output to the console.

Remember that calling the main function by using the statement main(), which is at the end of

this program example, is required for the function main to execute. As an experiment, remove

the last line of code (the call the main ()) and see what happens. The result will be that main

() is never called and there is no output. However, there will also be no error. Not calling main is

not a syntax error, it is a programming choice. One could argue that not calling the main function

is a logical error as the program cannot perform its goal without the call.

Example 4.1.2: The for/in loop using range.

The for/in loop for range has the following basic syntax:

 for <variable name> in range(<integer value>):

 <statements>

Publication Pending
Author: Dr. Ami Gates
Date: 8/11/2016
All material is subject to copy write laws. Do not post, print, or reproduce without written permission.

The range function can create a sequence of values. The syntax for the range function is:
 range(start, stop, [step])

The start is the first value in the sequence. The stop will not be in the sequence and will be

the value after the last value in the sequence. For example, range(1,5) is 1, 2, 3, 4. The

step is optional and is the integer amount that each value in the sequence is separated by. For

example, range(1,10,2) is 1, 3, 5, 7, 9.

As a note, the start, stop, and step are called arguments or parameters to the range

function. The only parameter that is required in the range function is the value of start. All

parameter values must be integers.

The for/in loop can loop through any range. The following small program offers three

illustrations of the for/in loop with range.

ForInLoopRangeChapter4.py

by Ami Gates

This code offers examples of for/in and range()

def main():

 # for/in loop basic range(start)

 print("Range(start) example")

 for j in range(5):

 print(j)

 # for/in loop basic range(start,stop)

 print("Range(start,stop) example")

 for val in range(5,10):

 print(val)

 # for/in loop basic range9start, stop, step)

 print("Range(start,stop,step) example")

 for item in range(2,11,2):

 print(item)

main()

Publication Pending
Author: Dr. Ami Gates
Date: 8/11/2016
All material is subject to copy write laws. Do not post, print, or reproduce without written permission.

The output for this program is:

Range(start) example

0

1

2

3

4

Range(start,stop) example

5

6

7

8

9

Range(start,stop,step) example

2

4

6

8

10

Ranges and lists can be equivalent. For example, if range(6)is used, it is equivalent to the list

[0, 1, 2, 3, 4, 5]. All ranges start at “0”, unless a start parameter and a stop parameter

are both used in the range function. For example, range(6) is 0, 1, 2, 3, 4, 5, but

range(2,6) is 2, 3, 4, 5.

Within each of the three for/in examples above, there is a variable that holds the current value in

the loop. For example, in the code:

print("Range(start) example")

for j in range(5):

 print(j)

The variable j holds the value 0, then 1, then 2, and so on until the end of the range, which is 4.

In this code:

print("Range(start,stop,step) example")

for item in range(2,11,2):

 print(item)

The variable item holds the value 2, then 4, then 6, etc. until the end of the range (which is 10).

Publication Pending
Author: Dr. Ami Gates
Date: 8/11/2016
All material is subject to copy write laws. Do not post, print, or reproduce without written permission.

Exercise 4.1.1: For/in loops and calculations

Complete the following steps:

1. Create a new .py file called Chapter4Loops.py and save it.

2. Add comments to the top that include the file name, your name, and what the program does.

3. Write a small program that asks a user for an integer Fahrenheit temperature number between

30 and 80.

4. Use a for/in loop to output every other number between the user input value and the user input

value plus 10.

5. Use another for/in loop to output all equivalent Celsius temperatures starting with the user

input and including the next two following higher temperatures (in increments of one). For

example, if the user enters 60, the Celsius outputs will be for 60, 61, and 62, and so would be

15.56, 16.11, 16.67.

6. Place all code inside one main function. Remember to call main at the end. Use print

statements as needed to clarify output.

Solution and Review for Exercise 4.1.1:

One possible solution to this exercise is the following program.

Chapter4Loops.py

by Ami Gates

This program illustrates for/in loops

def main():

 TempF=eval(input("Enter temp in F between 30 and 80 with no

decimals: "))

 print("Every other number from ",TempF, " to ", TempF+10)

 for i in range(TempF,TempF+10,2):

 print(i)

 print("Celsius temperatures for ", TempF, " and ", TempF+1,

" and ", TempF+2)

 for t in range(TempF, TempF+3):

 TempC= (t -32)* (5/9)

 print(round(TempC,2))

main()

Publication Pending
Author: Dr. Ami Gates
Date: 8/11/2016
All material is subject to copy write laws. Do not post, print, or reproduce without written permission.

An input and output for this example program is:

Enter temperature in F between 30 and 80 with no decimals:

60

Every other number from 60 to 70

60

62

64

66

68

Celsius temperatures for 60 and 61 and 62

15.56

16.11

16.67

In this exercise, consider the code:

for i in range(TempF,TempF+10,2):

 print(i)

Here, the start of the range is the temperature the user enters. The stopping point (not included in

the sequence) is the temperature plus 10, and the step is 2. This will create an output of every

other value between the temperature entered and temperature+10. The print statement prints each

of the values.

Next, consider the code:

for t in range(TempF, TempF+3):

 TempC= (t -32)* (5/9)

 print(round(TempC,2))

Here, the range starts at the temperature the user enters and ends at the user temperature plus

three. Why plus three? Because the goal is to print the Celsius equivalents for the temperatures

entered and the next two. Recall that the stop in the range is not included. Change this value to 2

and see that it does not work as desired.

Notice that inside of for/in loops there can be calculations, expressions, and other statements.

Inside of loops can be other loops, decision structures, functions, and so on.

Publication Pending
Author: Dr. Ami Gates
Date: 8/11/2016
All material is subject to copy write laws. Do not post, print, or reproduce without written permission.

Example 4.1.3: Stepping through code

When first learning about loops, it can be very helpful to write out the values for all involved

variables as the loop runs-- from beginning to end. This is called stepping through code. Many

debuggers also offer an advanced version of this concept, but at the start of coding, it is more

valuable to do this by hand.

Consider this code:

SumProdLoop.py

Ami Gates

def main():

 counter=0

 k = 1

 for i in [1,2,3,4]:

 counter=counter+i

 k = k * i

 print("The counter is ", counter)

 print("The k value is ", k)

main()

The output for this program is:

The counter is 10

The k value is 24

Step through this loop, keeping track of the values of all variables:

Before entering the loop:

 counter = 0

 k = 1

Enter the loop

Step 1

 i = 1

 counter = counter + i  counter = 0 + 1  counter = 1

 k = k * i  k = 1 * 1  k = 1

Step 2

 i = 2

 counter = counter + i  counter = 1 + 2  counter = 3

 k = k * i  k = 1 * 2  k = 2

Step 3

 i = 3

Publication Pending
Author: Dr. Ami Gates
Date: 8/11/2016
All material is subject to copy write laws. Do not post, print, or reproduce without written permission.

 counter = counter + i  counter = 3 + 3  counter = 6

 k = k * i  k = 2 * 3  k = 6

Step 4

 i = 4

 counter = counter + i  counter = 6 + 4  counter = 10

 k = k * i  k = 6 * 4  k = 24

At the end of the program, the value of counter is 10 and the value of k is 24. This ability to

update and manipulate variables within loops is a critical part of programming logic.

Thus far, examples have shown that the for/in loop can iterate through values in a range or values

in a list. In addition, loops, such as the for/in loop, can iterate through strings. A string is any

collection of characters, special characters (like $ or #), or numbers. Strings are always contained

in either single or double quotes. The following are all examples of strings.

name="Bob Smith"

type(name)

Out[66]: str

sentence1="You go first!"

type(sentence1)

Out[68]: str

phrase="The shop collected $45,000.43 in 2016!!"

type(phrase)

Out[70]: str

In each case above, the string is contained in quotes. The type() function returns the type

(string, int, float, etc.) of data the variable represents. Note that when a number is contained in

quotes, it is considered a string (just like any other word, sentence, or phrase), and so does not

have any true numerical value. If a number is saved or collected as a string, it cannot be

manipulated like a number. In other words, it cannot be part of a mathematical calculation. It is

possible to convert a string number into a true number using the function called int(); or to

create a decimal number, the function called float(). These concepts will be discussed in more

detail in the chapter on data types. The following code also illustrates this idea.

x = "45.67"

Publication Pending
Author: Dr. Ami Gates
Date: 8/11/2016
All material is subject to copy write laws. Do not post, print, or reproduce without written permission.

type(x)

Out[72]: str

z = x+3

Traceback (most recent call last):

 File "<ipython-input-73-a486c061ffc6>", line 1, in

<module>

 z = x+3

TypeError: Can't convert 'int' object to str implicitly

x = float(x)

z = x+3

z

Out[76]: 48.67

In the above example code, the variable x is set equal to 48.67 as a string. The type function

confirms that the type of x is str (string). Next, if x is added to a number, an error occurs because

x is not a number itself – it is a string. Next, if x is converted to a float (a decimal number), it can

then be added to the number 3 successfully.

While strings, string manipulation and types will be covered more thoroughly in a later chapter,

it is valuable to illustrate a for/in loop with a list of strings.

Example 4.1.4: The for/in loop with strings

The following program illustrates the use of the for/in loop with a list of strings.

Chapter4LoopsStrings.py

by Ami Gates

This program illustrates the for/in loop w/strings

main function

def main():

 Namer()

Publication Pending
Author: Dr. Ami Gates
Date: 8/11/2016
All material is subject to copy write laws. Do not post, print, or reproduce without written permission.

Definition of the Namer function

def Namer():

 x = ""

 for w in ["Dr. ", "Henry ", "Hughs"]:

 print(w)

 x = x + w

 print(x)

Call to main()

main()

The output for this code is:

 Dr.

Henry

Hughs

Dr. Henry Hughs

Key elements in this program:

1) The definition of two functions, main() and Namer().

2) The use of string concatenation, the + symbol.

3) Traversing through a list of strings using for/in.

There are several details to discuss about this example program. Notice first, the extra use of

comments. Recall that the # symbol will turn any line into a comment. The # symbol tells the

interpreter to skip that line during the execution of the program. The use of comments can be

very personalized. For example, I used ## for comments within the body of the program. This is

not required and is a style for ease of reading. Notice also that the comments explain and

describe parts of the program, making it easier to read and to understand. Commenting is
invaluable in coding.

This program defines two functions, main()and Namer(). The Namer function is defined

outside of the main function and is called from within the main function. Functions will be

discussed in detail in a later chapter. However, a program can have as many defined functions as

desired. Functions can be defined inside or outside of other functions.

Inside of the definition of the Namer() function, the first statement is an assignment of the

variable x. Here, x = "", which is the same as saying that x takes on the value of an empty or

blank string. Next, the for/in loop begins. There are two statements inside the for/in loop. The

Publication Pending
Author: Dr. Ami Gates
Date: 8/11/2016
All material is subject to copy write laws. Do not post, print, or reproduce without written permission.

first statement prints the value of the variable w which is assigned each value in the list of strings

as the loop progresses. Remember, a string is any collection of characters or symbols that are

inside of a set of quotes. Therefore, in this case, the list contains three strings, "Dr. ", "Henry ",

"Hughs". The space after Dr. is part of the string, as is the space after Henry.

As the for/in loop executes, the first value assigned to w is "Dr. ". Inside of the loop, the print

statement will print the value of w and so will print Dr. .

The next statement in the loop is the following:

x = x + w

Both x and w are strings (words). So, how can they add together? While this topic will be

covered in great detail in the chapter on strings, this is an introduction to the idea of string

concatenation, which is a fancy word for combining or placing two strings together to make one

longer string. Therefore, the string value in the variable x will be the combination of blank

(because x is currently an empty string at this point in the loop) and the string in w. The

following illustrates the step through of the for/in loop:

 x = ""

 Loop1:

 w = "Dr. "

 x = x + w = "Dr. "

 Loop2:

 w = "Henry "

 x = x + w = "Dr. Henry "

 Loop3:

 w = "Hughs "
 x = x + w = "Dr. Henry Hughs "

Therefore, the print statement outside of the loop will print Dr. Henry Hughs. To visualize

the flow of this example program, a flowchart can be created.

Publication Pending
Author: Dr. Ami Gates
Date: 8/11/2016
All material is subject to copy write laws. Do not post, print, or reproduce without written permission.

Example 4.1.5: Flowchart for example 4.1.4

Once the print(x) statement in the function Namer() has executed, the program returns to

main(). However, there are no further statements in main() and so the program ends. As an

exercise, add a print statement to the main function under the call to the Namer function and

evaluate the result.

For/in loops are often considered to be predetermined loops. The number of times a for/in loop

will run is determined by the size of the range or the length of the list. In some cases, it is

necessary for a loop to repeat for a variable number of times, based on a condition. The while

loop offers this option.

4.2: While Loops

A while loop will repeat itself until a logical condition is met. One issue with while loops, as

opposed to for/in loops is that if the while loop is not properly controlled, it can be infinite and

will eventually use excess resources and fail. The syntax for the while loop is the following:

 while <condition is true>:

 <statements>

Before discussing logical and logical conditions, review the next few examples for while loops.

Publication Pending
Author: Dr. Ami Gates
Date: 8/11/2016
All material is subject to copy write laws. Do not post, print, or reproduce without written permission.

Example 4.2.1: A Simple while loop example

WhileLoop1.py

by Ami Gates

Code for a simple while loop

def main():

 i = 10

 while i < 20:

 print(i)

 i = i + 2

main()

The output for this small program is the following:

 10

 12

 14

 16

 18

There are a few things to notice in this example. The first is that the variable i was initialized to

10. Next, the while loop condition is, i < 20. Notice also that inside the while loop, the value

of i is increased by 2 each time the loop runs. There is also a print statement inside the loop that

prints all the values that i takes on throughout the loop. Specifically, because i starts at 10, the

first print statement will print the value 10, as shown in the output.

Next, the value of i is incremented by 2 so that its new value is 12. The condition of the while

loop is then checked to determine whether or not to repeat the loop or exit the loop. The

condition of the while loop is , i < 20. At this point, i is 12, which is less than 20. Thus, the

while loop condition is True and the loop continues to run. The loop with stop running when the

condition becomes False. The following step through illustrates the loops and the outputs at each

iteration of the loop:

 i = 10

 Loop 1: i < 20? True, enter loop

print (i)

i = i + 2 = 10 + 2 = 12

 Loop 2: i < 20? True. Enter loop.

Publication Pending
Author: Dr. Ami Gates
Date: 8/11/2016
All material is subject to copy write laws. Do not post, print, or reproduce without written permission.

print (i)

i = i + 2 = 12 + 2 = 14

Loop 3: i < 20? True. Enter loop.

print (i)

i = i + 2 = 14 + 2 = 16

Loop 4: i < 20? True. Enter loop.

print (i)

i = i + 2 = 16 + 2 = 18

Loop 5: i < 20? True. Enter loop.

print (i)

i = i + 2 = 18 + 2 = 20

Loop 6: i < 20? False. Do not enter loop. Loop ends.

This example illustrates that the while loop checks its condition each time the loop is entered.

The loop repeats until the condition is False. If the condition is never False, the loop with be

infinite and will eventually crash. Loop conditions can also be determined by user input, as well

as by other variable values.

Example 4.4.2: A while loop based on user input

In this next example, a while loop condition will be determined by user input. In the following

program, the user is asked to input a number between 1 and 10. The program gets the input from

the user with the input function and evaluates the input using eval. Recall that the eval

function is needed when input is numerical.

Next, the program initializes the variable called guess to the number 1. The while loop

checks the condition of equality between num, the user input number, and guess, the variable

holding the current programmed random guess for the what the user’s number is. The loop will

stop when condition guess!=num is False. Note that the != symbol stands for not equal to.

WhileLoop2.py

by Ami Gates

Example program to illustrate a while loop conditioned on

input

import random

def main():

Publication Pending
Author: Dr. Ami Gates
Date: 8/11/2016
All material is subject to copy write laws. Do not post, print, or reproduce without written permission.

 num=eval(input("Choose any number between 1 and 10: "))

 counter=0

 guess=1

 while guess != num:

 guess=random.randint(1,10)

 print("Is your number a ", guess)

 counter=counter+1

 print("I guessed your number in ", counter, "tries.")

main()

One possible output of this program might be the following:

Choose any number between 1 and 10: 3

Is your number a 5

Is your number a 6

Is your number a 4

Is your number a 5

Is your number a 3

I guessed your number in 5 tries.

This program contains a few new elements. First, this program imports a module called

random. The syntax for importing a Python module is:

import <Module Name>

A module is a collection of code that offers certain functionality. Modules will be discussed in

detail in future chapters. By importing the random module using import, the program can

gain access to the methods and functions contained in that module. There are hundreds of

modules and packages available for Python, and they are generally selected based on the need for

additional functionality.

One such method contained in the random module is called, randint(a, b). The

randint(a, b) function allows the user to generate random integers between any given

values of a and b. In the program above, consider the statement:

guess = random.randint(1,10)

This statement creates a variable called guess. Then, randint(1,10)will generate a random

integer between 1 and 10 and assign it to guess. As noted, Python 3 has hundreds of ready-

made modules, each with methods and functions that can be utilized. There is no magic trick for

Publication Pending
Author: Dr. Ami Gates
Date: 8/11/2016
All material is subject to copy write laws. Do not post, print, or reproduce without written permission.

knowing all possible modules, and the best approach to learning about a new module is to

perform an Internet or textbook search on a goal (such as creating a random number between 1

and 10 that is an integer) and then viewing the results.

Program Example Review by Line of Code

1. import random

2. def main():

3. num=eval(input("Choose any number between 1 and 10: "))

4. counter=0

5. guess=1

6. while guess != num:

7. guess=random.randint(1,10)

8. print("Is your number a ", guess)

9. counter=counter+1

10. print("I guessed your number in ", counter, "tries.")

11. main()

Code line 1:

Imports the module called random so that the method random.randint(a,b) can be used.

Code line 2:

Start the definition of the main function. All lines of code indented under main belong to main.

Recall that indentation denotes scope.

Code line 3:

The variable called num is assigned the value input by the user. The eval is required as the

number is numerical and not a string.

Code lines 4 and 5:

The variable called counter is initialized to the value 0 and will keep track of the number of

cycles in the while loop.

The variable called guess is initialize to the value of 1, and will keep track of the latest random

number generated by line 7: guess=random.randint(1,10)

Code line 6:

Publication Pending
Author: Dr. Ami Gates
Date: 8/11/2016
All material is subject to copy write laws. Do not post, print, or reproduce without written permission.

The while loop is defined with condition: guess != num and it will repeat as long as the

condition is True.

Code line 7:

The variable guess is assigned to the result of calling the random.randint(1,10) which

will generate a random integer between 1 and 10.

Code lines 8 and 9:

Line 8 prints out the current guess and line 9 updates the counter. Line 9 is the end of the loop.

Once line 9 executes, the program returns to the condition of the while loop. If the condition is

True, the loop repeats. If the condition is not True, the program exits the loop and progresses to

line 10.

Code line 10:

Line 10 is outside of the while loop and will execute only when the loop ends (when guess!=

num is False). The pint statement will print the number of tries it took to guess the number. This

value is stored in the counter variable.

Code line 11:

This is actually the first line of code that is executed in the program, after the import of random.

This line of code calls the main function and allows all the statements inside of main to run.

Without line 11, this code would not do anything. Try it and see.

One of the key differences between the for/in loop and the while loop that the ability to run

indefinitely. The for/in loop cannot run forever, and the list or range of values that it will run for

can be predetermined. The while loop can run forever. This is often referred to as an infinite

loop, which is considered a computer error, unless it is purposeful and the loop contains other

statements or conditions that can end it (a topic for later chapters). When creating a while loop,

pay special consideration to the condition being tested, whether it is true or false, when it is true

or false, and that it will eventually be false and end.

4.3: Logical Boolean Operators

Many loop structures in programming depend on logical conditions. In the while loop, for

example, the logical condition must be evaluated as “true” before the loop can be entered.

Similarly, once the logical condition of the while loop becomes “false”, the while loop cannot be

entered, and so will end.

Publication Pending
Author: Dr. Ami Gates
Date: 8/11/2016
All material is subject to copy write laws. Do not post, print, or reproduce without written permission.

Consider the logical condition, guess!=num. Here, the logical operator is the != symbol,

which stands for “not equal to”. If the value in the variable guess and the value in the variable

num are not equal to each other, then the logical condition, guess!=num, is “true”. However, if

the value in the variable guess and the value in the variable num are equal to each other, then

the logical condition, guess!=num, is “false”.

In Python (and most other programming languages), there are a set of Boolean logical

operators. Table 4.1 illustrates these operators in example format.

 Operator Meaning

== Is equal to

>= Is greater or equal to

<= Is less than or equal to

> Is strictly greater than

< Is strictly less than

!= Is not equal to
Table 4.1: Logical Boolean Operators

Logical operators can be investigated using the IPython console. The following example

illustrates a few logical conditions and their truth values (True or False).

Example 4.3.1: Logical condition examples using the console.

a, b, c = 1, 2, 2

a == b

Out[107]: False

b == c

Out[108]: True

a > b

Out[109]: False

a <= c

Out[110]: True

a > c and b > c

Out[111]: False

In this example illustration, a multiple assignment statement is first entered. The statement,

Publication Pending
Author: Dr. Ami Gates
Date: 8/11/2016
All material is subject to copy write laws. Do not post, print, or reproduce without written permission.

 a, b, c = 1, 2, 2

assigns the value of 1 to a, the value of 2 to b, and the value of 2 to c. Next, when a==b is

entered, the resulting output is false (because 1 does not equal 2). Similarly, when a <= c is

entered, the result output is true. Logical conditions are often used to control loops in programs,

as well as other decision structures.

In the example above, the logical expression, a > c and b > c is evaluated and the result

output is false. Note the use of the and in the logical expression. The logical operators, and,

or, and not are also known as Boolean operators.

Table 4.2 is a truth table and illustrates a few basic Boolean logic rules. While there are many

options for creating Boolean statements, the evaluation of each will be either true or false,

depending on the truth of the starting variables. Note that R and S represent any two statements

or variables. The first row of the table assumes that both R and S are True, and then displays the

truth evaluation for compound logical statements that follow. Each row represents the truth

evaluation for each statement, given the initial truth values of R and S.

R S R and S R or S (R and S) or R not S and R

True True True True True False

True False False True True True

False True False True False False

False False False False False False
Table 4.2: Logical Truth Table
Both logical operators and Boolean operators can be utilized in the conditions of loops and other

decision structures.

Example 4.3.2: Loops and Boolean conditions

Consider the following program.

BooleanWhile.py

by Ami Gates

Illustrates a while loop with a boolean condition

The main function will call the And_fun function and the

Or_fun function.

def main():

Publication Pending
Author: Dr. Ami Gates
Date: 8/11/2016
All material is subject to copy write laws. Do not post, print, or reproduce without written permission.

 And_fun()

 Or_fun()

The And_fun function creates three variables and assigns

values to them. It then illustrates a while loop that

contains a boolean "and" condition.

def And_fun():

 a = 1

 b = 5

 c = 4

 while a < b and a < c:

 print("In the And_fun we have: ", a, b, c)

 a = a + 1

The Or_fun function creates three variables and assigns

values to them. It then illustrates a while loop that

contains a boolean "or" condition.

def Or_fun():

 a = 1

 b = 5

 c = 4

 while a < b or a < c:

 print("In the Or_fun we have: ", a, b, c)

 a = a + 1

main()

The output for this program is:

In the And_fun we have: 1 5 4

In the And_fun we have: 2 5 4

In the And_fun we have: 3 5 4

In the Or_fun we have: 1 5 4

In the Or_fun we have: 2 5 4

In the Or_fun we have: 3 5 4

In the Or_fun we have: 4 5 4

There are several items of note in this example program.

Publication Pending
Author: Dr. Ami Gates
Date: 8/11/2016
All material is subject to copy write laws. Do not post, print, or reproduce without written permission.

First, there are three functions. The first is main(), the second is And_fun(), and the third is

Or_fun(). The main function calls the other two functions and the program calls the main

function at the end.

Next, the And_fun() function contains a while loop whose condition is based on the truth

value of the condition: a < b and a < c. If either a < b is False, or a < c is False, or both

are False, then the condition, a < b and a < c, is False and the loop is not entered.

When the And_fun() starts, it initializes a to 1, b to 5, and c to 4. Therefore, when a < b

and a < c is first evaluated, it is True and the while loop can be entered. Within the while

loop, the print statement outputs the values of a, b, and c.

In addition, inside the while loop is the following statement: a = a + 1. This statement

increments the value of a by 1. As such, after the loop runs one time, the value of a becomes 2.

What would happen if this statement were removed? The answer is that the loop would never

end and the program would crash and note an error.

The while loop inside the And_fun() function will repeat three times in this example, until a

becomes 4. Once a takes on the value of 4, the condition, a < b and a < c is no longer true

and the loop will end.

Similarly, the Or_fun() initializes a, b, and c. However, the condition for the while loop

contains a Boolean or (rather than and). This alters the truth of the condition because in the case

of Boolean or, either a < b, or, a <c, or both can be true for the entire condition to be true. The

output shows that the while loop runs four times and prints the values of a, b, and c each time.

Finally, notice the use of comments throughout the program. As you write larger and larger

programs, including comments will become necessary and invaluable.

4.4: The if/else/elif Decision Control Structure

Thus far, the for/in and the while loops have been described. The for/in loop repeats or iterates

over a list of numbers or strings, or over a defined range. The number of loops or iterations of a

for/in loop is predefined. The while loop repetition is based on the truth of a condition, or a

special exit statement called a break (which will be discussed later in this section). The while

loop can be infinite and therefore must be controlled. The number of repetitions in a while loop

is not predetermined and may depend on other inputs that affect the truth of the while loop

condition.

In many cases, decisions must be made within a program. Decisions can be based on logical

conditions that are predefined or that depend on results generated from other portions of the

Publication Pending
Author: Dr. Ami Gates
Date: 8/11/2016
All material is subject to copy write laws. Do not post, print, or reproduce without written permission.

program. For example, a function can return a value that is then used to make a decision, or a

user might offer a certain input via the console that affects a logical truth in a decision structure.

The if/else/elif statements enable such decision making and flow-control within a program. The

syntax for the if/else/elif decision structure is the following. The elif and the else are both

optional.

 if <logical condition>:

 <statements>

 elif <logical condition>:

 <statements>

 else:

 <statements>

The logical conditions may be simple, such as x >10. In this case, if the value in x is larger than

10, the condition will be true and the if statements will execute. Logical conditions may also be

complex and dependent on other variables, such as fname[0]=="A" or fname[0]=="a".

In this case, if fname contains a string that is a person’s first name (such as Alice), then

fname[0] will be the first letter in that string (so A for Alice). This logical statement checks

to see if this first letter is either A or a. If it is, the condition is true and the if statement(s) are

executed. Strings will be covered in more detail on the chapter on data types and structures.

Example 4.4.1: An if/elif/else example

Consider the following program example. It is best to type in, save, run, and make updates to this

program to learn what it does and what more it can do.

If_Else_Example.py

Ami Gates

This program illustrations decisions and flow

def main():

 print("Welcome to the Grades Program")

 NumGrades=eval(input("How many grades will you enter?: "))

 print("Please enter your ",NumGrades," class grades.")

 gcount = 1

 gradeSum=0

Publication Pending
Author: Dr. Ami Gates
Date: 8/11/2016
All material is subject to copy write laws. Do not post, print, or reproduce without written permission.

 while gcount <= NumGrades:

 Grade=eval(input("Enter the next grade: "))

 gradeSum = gradeSum + Grade

 gcount = gcount + 1

 Average=round(gradeSum/NumGrades,2)

 print("\nThe average of your grades is ", Average)

 if Average > 89.4:

 print("Letter grade is an A")

 elif Average > 79.4 and Average < 89.5:

 print("Letter grade is a B")

 elif Average > 69.4 and Average < 79.5:

 print("Letter grade is a C")

 elif Average > 59.4 and Average < 69.5:

 print("Letter grade is a D")

 else:

 print("Letter grade is an F")

#-----------Program starts here ---call to main()-------

main()

A possible input and output for the above program:

Welcome to the Grades Program

How many grades will you enter?: 5

Please enter your 5 class grades.

Enter the next grade: 89.6

Enter the next grade: 75.2

Enter the next grade: 97.1

Enter the next grade: 88.4

Enter the next grade: 91.0

The average of your grades is 88.26

Letter grade is a B

Publication Pending
Author: Dr. Ami Gates
Date: 8/11/2016
All material is subject to copy write laws. Do not post, print, or reproduce without written permission.

For each example, be sure to type in the code, run it, alter it, and test it. See what the code does

and see what it does not do. Notice also that so far, none of the examples have had any error

checking to mitigate user based errors – such as, if a user enters “Green” instead of a numerical

grade. Users can create errors be misusing a program. Program must contain methods for helping

the user to use the program correctly. We will discuss error checking in future chapters. For now,

think about what can be added to this program to assist the user and to avoid user-caused failure.

4.5: Nesting Loops and Decisions

When loops occur inside of other loops, this is referred to as nested loops. Nested loops can

create complicated logic, and flowcharting is recommended to clarify coding goals and

outcomes. Any type of loop or decision structure can be placed inside of each other. While there

is no limit to the depth of the nesting (the number of nested loops or decisions), the greater the

nesting, the greater the chance for error (both logical and syntactical).

The syntax for three nested while loops is:

 while <logical condition>:

 <statements>

 while <logical condition>:

 <statements>

 while <logical condition>:

 <statements>

The syntax for nesting an if statement inside of a for/in statement inside of a while

loop is:

 while <logical condition>:
 <statements>

 for variable in list:

 <statements>

 if <logical condition>:

 <statements>

These examples are only two of many possible combinations.

Publication Pending
Author: Dr. Ami Gates
Date: 8/11/2016
All material is subject to copy write laws. Do not post, print, or reproduce without written permission.

Example 4.5.1: The double while loop

Double_While.py

by Ami Gates

This program illustrates nested while loops

def main():

 num_students=eval(input("Please enter the number of students

you will have grades for: "))

 num_grades=eval(input("Please enter the number of grades per

student: "))

 print("\n")

 gcounter=0

 scounter=1

 while scounter <= num_students:

 print("Enter the grades for Student #", scounter)

 grades_total=0

 while gcounter < num_grades:

 getgrade=eval(input("Enter grade: "))

 grades_total = grades_total + getgrade

 gcounter=gcounter+1

 print("The average grade for Student ", scounter, "is ",

grades_total/gcounter, "\n")

 num_students = num_students-1

 scounter=scounter+1

 gcounter=0

main()

One possible input/output for the above program:

Please enter the number of students you will have

grades for: 3

Please enter the number of grades per student: 2

Enter the grades for Student # 1

Publication Pending
Author: Dr. Ami Gates
Date: 8/11/2016
All material is subject to copy write laws. Do not post, print, or reproduce without written permission.

Enter grade: 90

Enter grade: 80

The average grade for Student 1 is 85.0

Enter the grades for Student # 2

Enter grade: 70

Enter grade: 60

The average grade for Student 2 is 65.0

In this example, two nested while loops are used because there will be multiple students to loop

through and each of those students will have multiple grades to loop through. So, for each

student (the outer loop), all grades must be collected and averaged (the inner loop).

Notice that once the inner loop has completed one cycle, the average for that student is printed.

Then, some of the variables are reinitialized, to start again for the next student. For example, the

variable called, gcounter, keeps track of the number (count) of grades that have been entered

for the current student. As each grade is entered, the value of gcounter is incremented (1 is

added to it). This allows for the use of gcounter for calculating the grade average. However, once

a particular student grade-set is collected, the gcounter must be reset (reinitialized) to its initial

value of 0.

As an exercise, type in this example program and run it for a few different inputs. Are the

outputs what you expect? Next, create a flow chart that describes this program. Pay special

attention to the creation and initialization of variables, as well as the need for the nested while

loops. What would happen if the second while loop were not nested inside the first while loop?

Try it and see.

Example 4.5.2: Nesting for/in and if/else

This example will illustrate the nesting of a for/in structure and an if/else structure. For this

example, note that the formula for home mortgage monthly payments will also be used. The

formula is included here for reference.

monthlypayment = mortcost*((mrate*((1+mrate)**months))/(((1 + mrate)**months) - 1))

From the formula, the “mrate” is the yearly rate divided by 12, the “**” means exponent, and the
“months” is the number of months of payments. The “mortcost” is the amount that is being

Publication Pending
Author: Dr. Ami Gates
Date: 8/11/2016
All material is subject to copy write laws. Do not post, print, or reproduce without written permission.

borrowed, and so is the price of the home minus the down payment. The following program

illustrates for/in and if/else nesting.

NestingLoopsDec.py

Ami Gates

This program will illustrate the nesting of for/in and if/else

#--------definition of main() function ----------

def main():

 print("This program will display the monthly mortgage payments for four

different rates, ")

 print("and for three duration options.\n")

 Mortgage()

#-------definition of Mortgage() function----------------

def Mortgage():

 houseprice=eval(input("Please enter the house price: "))

 downpayment=eval(input("Please enter the downpayment: "))

 maxpay=eval(input("Please enter the maximum amount you wish to pay each

month: "))

 mortcost = houseprice - downpayment

 for yearrate in [.03, .035, .045, .05]:

 for years in [15, 20, 30]:

 mrate = yearrate/12

 months = years*12

 monthlypayment = mortcost*((mrate*((1+mrate)**months))/(((1 +

mrate)**months) - 1))

 yearpercent=yearrate*100

 if round(monthlypayment,2) <= maxpay:

 print("The monthly payment for an interest rate of ",

round(yearpercent,2), "%")

 print("and for ", years, "years")

 print("will be :", round(monthlypayment,2), "\n")

 else:

 print("The rate of ", round(yearpercent,2), "% combined with

",years, "years, does not match")

 print("your budget constraints.\n\n")

#------Start of Program – call to main() --------

main()

While output can vary as it is based on input collected from the user, the following is a possible

input/output example when running the program:

Publication Pending
Author: Dr. Ami Gates
Date: 8/11/2016
All material is subject to copy write laws. Do not post, print, or reproduce without written permission.

This program will display the monthly mortgage payments for

four different rates,

and for three duration options.

Please enter the house price: 400000

Please enter the downpayment: 40000

Please enter the maximum amount you wish to pay each month:

2000

The rate of 3.0 % combined with 15 years, does not match

your budget constraints.

The monthly payment for an interest rate of 3.0 %

and for 20 years

will be : 1996.55

The monthly payment for an interest rate of 3.0 %

and for 30 years

will be : 1517.77

The rate of 3.5 % combined with 15 years, does not match

your budget constraints.

The rate of 3.5 % combined with 20 years, does not match

your budget constraints.

The monthly payment for an interest rate of 3.5 %

and for 30 years

will be : 1616.56

The rate of 4.5 % combined with 15 years, does not match

your budget constraints.

The rate of 4.5 % combined with 20 years, does not match

your budget constraints.

Publication Pending
Author: Dr. Ami Gates
Date: 8/11/2016
All material is subject to copy write laws. Do not post, print, or reproduce without written permission.

The monthly payment for an interest rate of 4.5 %

and for 30 years

will be : 1824.07

The rate of 5.0 % combined with 15 years, does not match

your budget constraints.

The rate of 5.0 % combined with 20 years, does not match

your budget constraints.

The monthly payment for an interest rate of 5.0 %

and for 30 years

will be : 1932.56

This program contains several details. First, this program contains two functions. The first is the

main()function and the second is the Mortgage() function. The main() function is very

small and simply prints out a brief explanation. It then calls the Mortgage() function. The

Mortgage() function first collects information from the user, such as the cost of the home, the

down-payment (which must be subtracted from the cost as it will not be part of the mortgage),

and the maximum monthly payment desired.

Next, the Mortgage() function contains two, nested for/in loops, with an if/else nested inside of

the second for/in loop. In this case, the double for/in loops are needed because the program will

calculate the monthly mortgage payment for all yearly rates, [.03, .035, .045, .05], and

for 15, 20, and 30 year durations. The nested for/in loop allows the program to start with the .03

(3%) yearly rate, and calculate all monthly mortgage costs for 15, 20, and 30 years (and to print
the results). Once the inner for/in loop has completed its calculations and output for .03 (3%), it

returns to the outer loop, progresses to the next element in the yearrate list, and repeats the

inner loop again. In other words, for all the rates in the outer loop, including .03, .035, .045, and

.05, the inner loop will run. This can be observed in the output of the program. As an exercise,

try to rewrite this program without nested loops. What happens?

Finally, the if/else statements are nested inside of the inner for/in loop. The if/else statements

allow the inner loop to determine if the monthly payment for each combination of duration and

rate meets or exceeds the users maximum requirements. If the monthly payment is less than or

equal to the users maximum payment, the information is printed as output by the inner loop. If

the payment exceeds the user’s maximum payment (in the else statement), the user is notified of

this via output as well.

Publication Pending
Author: Dr. Ami Gates
Date: 8/11/2016
All material is subject to copy write laws. Do not post, print, or reproduce without written permission.

There is no limit to the number of nested loops or decision structures a program can contain.

However, nesting adds complexity, and exceeding three nested loops may result in less easily

predictable outcomes. As an exercise, type in and run this program. Make changes and see what

effects those changes have.

4.6: Break, Continue, and Pass

The break statement offers an option for breaking out of a loop and proceeding from the next

statement that occurs after the loop body. The break statement generally appears after a

condition, if true, will execute the break.

The syntax for break is:

 break

The following is a small collection of code using the break statement.

def main():

 userinput="True"

 while userinput[0] == "T" or userinput[0]=="t":

 print("Do these statements...")

 userinput=input("Enter True or False: ")

 if userinput[0] == "F" or userinput[0]=="f":

 break

main()

The continue statement stops the current loop at the point of the continue statement, and returns

to the loop starting statement. Once a continue statement is executed, no further statements, in

the loop, following the continue statement, are executed. However, unlike the break statement,

the continue statement does not break out of the loop. Instead, the continue statement continues

the loop at its next iteration. The continue statement is often coupled with a decision control

statement, such as an if statement.

The syntax for continue is:

 continue

The following is a small collection of code using the continue statement.

Publication Pending
Author: Dr. Ami Gates
Date: 8/11/2016
All material is subject to copy write laws. Do not post, print, or reproduce without written permission.

 x=0
 while x <10:

 x=x+1

 if x==5 or x==6:

 continue

 print(x)

The output for this will print 1, 2, 3, 4, 7, 8, 9, 10. The continue statement causes it not to print

the 5 or the 6.

The pass statement is used as a place holder for an otherwise empty location. The pass statement

is used when a statement is required due to syntax rules, but logically no statement is needed or

wanted.

The syntax for pass is:

 pass

The following example illustrates the use of the pass statement.

 grade=eval(input("Enter grade: "))
 if grade < 59.4:

 pass

 else:

 print(grade)

While these flow control statements can be very useful, they also add complexity. This is

especially true if they are used within nested loop or decision structures. Creating visual

flowcharts can be very effective during the predevelopment and planning stages and program

development.

Summary

Chapter 4 covered concepts of loops, including the for/in loop and the while loop. It also

discussed the if/elif/else decision structure. Examples illustrated that loops and decisions can

work together, either nested or sequential, to affect the flow or control of a program. Python also

offers other options for repetition, flow, and control, including the break statement, the continue

statement, and the pass statement.

