
Publication Pending
Author: Dr. Ami Gates

Date: 8/11/2016
All material is subject to copy write laws. Do not post, print, or reproduce without written permission.

Chapter 7: Data Structures

Python offers many data types and structures. Common data types in Python are integers, floats

(decimal numbers), and strings (any sequence of characters contained in quotes). In addition,

Python offers several data structures, including lists, tuples, sets, arrays (via numpy), and

dictionaries. Chapter 7 will explore the complex numerical data type, as well as several data

structure options.

A data structure, in a very broad sense, is an organized method for storing and managing data.

A filing cabinet is a type of data structure, especially if it is alphabetized. Not only do data

structures organize data, but they can also offer methods for retrieval, appending, removing,

analyzing, manipulating, and accessing data.

7.1: Complex Numbers in Python

Python also offers the complex data type for numerical data. While this book does not focus on

advanced or complex math, it is worth noting that the statement, import cmath will allow

complex math method utilization. The following lines of code will illustrate the complex data

type and will review the other common Python data types.

import cmath

z=cmath.sqrt(-9)

type(z)

Out[245]: complex

z

Out[246]: 3j

x=1

type(x)

Out[248]: int

y=3.46

type(y)

Out[250]: float

n="Hello !!"

type(n)

Out[252]: str

Recall that complex numbers (sometimes call imaginary numbers) are the result of the square

root of -1, which in Python is called, j. The above statements show the use of importing the

Publication Pending
Author: Dr. Ami Gates

Date: 8/11/2016
All material is subject to copy write laws. Do not post, print, or reproduce without written permission.

cmath library which allows for complex math. The following statements review data types, such

as int, float, and str. In addition to these common types, Python also offers several other data

structure types, such as lists, tuples, dictionaries, sets, and arrays.

7.2: Mutable versus Immutable

An interesting difference between some types and classes in Python, is that some are immutable

while others are not. An immutable object is one that cannot be changed in memory once it is

created. In other words, once an immutable object is created and assigned to a variable, it can

only be changed by deleting it in memory and creating a new object that reflects the desired

change.

Alternatively, a mutable object is a reference to a memory location. If a second variable is

assigned the value of the first, it is actually assigned the same reference in memory. This means

that if either variable value is altered, the value in the reference is altered, and the change affects

both variables.

In other words, mutable objects can be changed in their memory location. Immutable objects

cannot. For this reason, immutable sequences (such as tuples discussed below) can be faster

because they are not dynamic in nature. Mutable objects (such as lists) offer a greater number of

method and options but do not offer the same time or space efficiency.

The best way to better understand mutable versus immutable is through example. Numeric types,

such as integers, floats, and complex values, as well as strings and tuples are all immutable. If a

copy of any of these objects is made, the new copy has its own memory reference and changes to

the original or the copy do not affect the other.

Mutable (changeable) objects include lists, dictionaries, and sets. These objects are copied by

reference and so changes to one copy will affect all copies. As a note, there are method options

from the import copy library that offer true copies of mutable objects.

Example 7.2.1: Mutable versus Immutable

def main():

b is a float, which is not mutable

c is a string, which is not mutable

d is a list, which IS mutable

e is a tuple, which is not mutable

 b = 3.56

 c = "Fred"

 d = [1,3,5]

 e = (3,6,9)

 print("The data type for b = 3.56 is: ", type(b))

Publication Pending
Author: Dr. Ami Gates

Date: 8/11/2016
All material is subject to copy write laws. Do not post, print, or reproduce without written permission.

 print("The data type for c = \"Fred\" is: ", type(c))

 print("The data type for d = [1,3,5] is: ", type(d))

 print("The data type for e = (3,6,9) is: ", type(e))

 r=b

 s=c

 q=d

 w=e

 print("The value of r is: ", r)

 print("The value of s is: ", s)

 print("The value of q is: ", q)

 print("The value of w is: ", w)

 b = 3.56 + 1

 c = "Fred"+"Smith"

 d = d.append(7)

 e = (3,6,9,11)

 print("The value of r is: ", r)

 print("The value of s is: ", s)

 print("The value of q is: ", q)

 print("The value of w is: ", w)

main()

The output for the Program:

The data type for b = 3.56 is: <class 'float'>

The data type for c = "Fred" is: <class 'str'>

The data type for d = [1,3,5] is: <class 'list'>

The data type for e = (3,6,9) is: <class 'tuple'>

The value of r is: 3.56

The value of s is: Fred

The value of q is: [1, 3, 5]

The value of w is: (3, 6, 9)

The value of r is: 3.56

The value of s is: Fred

The value of q is: [1, 3, 5, 7]

The value of w is: (3, 6, 9)

Publication Pending
Author: Dr. Ami Gates

Date: 8/11/2016
All material is subject to copy write laws. Do not post, print, or reproduce without written permission.

In the program example above, four variables are created. Their types are printed as output and

are float, string, list, and tuple. Recall that floats, strings, and tuples are immutable, but lists are

mutable.

Next, four new variables are created and are set equal to the first four variables, so that:
r=b

s=c

q=d

w=e

Next, each of the original variables, b, c, d, and e, are changed. The question is whether the

changes to b, c, d, and e will affect r, s, q, or w respectively.

The result shows that changes to b, c, and e do not affect r, s, and w, because these variables are

immutable. However, the append change to d does affect the value of q because d is a list and

lists are mutable. This is noted in bold in the output above.

There are options for creating true copies of mutable objects. Use of the import copy library

is required as is the method, deepcopy().

Example:

import copy

NewList1=[1,3,5]

NewList1

Out[71]: [1, 3, 5]

TrueCopy=copy.deepcopy(NewList1)

TrueCopy

Out[73]: [1, 3, 5]

MutableCopy=NewList1

MutableCopy

Out[75]: [1, 3, 5]

NewList1.append(7)

NewList1

Out[77]: [1, 3, 5, 7]

TrueCopy

Out[78]: [1, 3, 5]

Publication Pending
Author: Dr. Ami Gates

Date: 8/11/2016
All material is subject to copy write laws. Do not post, print, or reproduce without written permission.

MutableCopy

Out[79]: [1, 3, 5, 7]

In this example, a list is created called NewList1. Next, two new variables are created and set

equal to NewList1. The first copy of NewList1 is called TrueCopy, which is created using

the copy.deepcopy() method. The second copy of NewList1 is called MutableCopy.

When NewList1 changed using the append() method, TrueCopy is not affected by the

change (as it was created using the deepcopy method). However, MutableCopy is affected by

the change.

Lists are mutable objects. If a list is copied without using the deepcopy method, then changes

made in memory to the list will affect all copies of the list.

7.3: Lists in Python

A list is a data structure that is a class type in Python, and is standard. The general structure of a

list is the following.

 MyList = [element0, element1, element2, … , elementn]

A list can be a sequence of anything. It is possible to have a list of lists. It is possible to have a

list that contains other data structures, such as tuples. It is possible to have list of some numbers

and some words, etc. Like strings, lists can be indexed and are very versatile. There are several

methods, functions, and rules for lists.

Example 7.3.1: Example of a list

mylist1=[1, 2.45, "ted", 3, "bill", "@!@!", (3,4)]

mylist1[0]

Out[38]: 1

mylist1[2]

Out[40]: 'ted'

type(mylist1)

Out[41]: list

type(mylist1[1])

Out[42]: float

Publication Pending
Author: Dr. Ami Gates

Date: 8/11/2016
All material is subject to copy write laws. Do not post, print, or reproduce without written permission.

To create a list, use the square brackets, []. As shown above, lists may contains any type of

information. Each element of a list can be accessed using the name of the list followed by square

brackets containing the index of the location of the element of interest. All list indices start at

“0”.

In the example above, the list is called mylist1. The list contains seven elements. The first and

third elements are integers.

mylist[0] = 1

mylist[2] = 3

The second element is a float.

 mylist1[1] = 2.45

type(mylist[1]) = float

The third, fifth, and sixth elements are strings.

The last element is a tuple.

mylist1[-1]

Out[41]: (3,4)

type(mylist1[-1])

Out[42]: tuple

mylist1[6]

Out[43]: (3,4)

Lists are very powerful and very versatile. Like strings, lists can be indexed. The first element in

a list starts at index 0. The last element of a list can be indexed with -1. Table 7.3.1 illustrates the

indexing of the list, mylist1=[1, 2.45, "ted", 3, "bill", "@!@!", (3,4)]

Table 7.3.1: Indexing a List

element 1 2.45 “ted” 3 “bill” “@!@!” (3,4)

forward

index

0 1 2 3 4 5 6

reverse

index

-7 -6 -5 -4 -3 -2 -1

The colon can also be used for indexing a range within a list. The range does not include the

element of the last index and so will not include mylist1[5].

Publication Pending
Author: Dr. Ami Gates

Date: 8/11/2016
All material is subject to copy write laws. Do not post, print, or reproduce without written permission.

mylist1[2:5]

Out[86]: ['ted', 3, 'bill']

Range Indexing Syntax

 NewList = MyList[a: b]

The name of the list is MyList. The first element in NewList will be MyList[a]. The last element

in NewList wil be MyList[b-1].

7.3.1: List Methods

Lists offer a set of methods to make their utilization more effective.

The append Method

The append method will append or include onto the end of the list any element. The syntax for

append is:

 MyList.append(newElement)

Example:

MyList=[2.2, "bob", [4,5], (1,2,3), "hello"]

MyList

Out[93]: [2.2, 'bob', [4, 5], (1, 2, 3), 'hello']

MyList.append("There!")

MyList

Out[95]: [2.2, 'bob', [4, 5], (1, 2, 3), 'hello', 'There!']

The extend Method

The extend method will extend a list with the elements from another list. The syntax for extend is

the following:

 MyList.extend(<list>)

Example:

MyList

Out[95]: [1, 2.2, 'bob', [4, 5], (1, 2, 3), 'hello',

'There!']

Publication Pending
Author: Dr. Ami Gates

Date: 8/11/2016
All material is subject to copy write laws. Do not post, print, or reproduce without written permission.

NewList=[1, "happy", 4.55]

MyList.extend(NewList)

MyList

Out[98]: [1, 2.2, 'bob', [4, 5], (1, 2, 3), 'hello',

'There!', 1, 'happy', 4.55]

Note that each element in NewList was appended on individually to MyList. The key

difference between append and extend is that if an element (such as a list, tuple, string, number,

etc. is appended to a list, it will be added to the list while still retaining its structure.

Alternatively, if extend is used, each element in the newlist with be individually appended and

will not retain original structure.

Example:

List1=[1, 2.2, "bob"]

List2=[5.5,"hello"]

List1.append(List2)

List1

Out[105]: [1, 2.2, 'bob', [5.5, 'hello']]

List1=[1, 2.2, "bob"]

List1.extend(List2)

List1

Out[108]: [1, 2.2, 'bob', 5.5, 'hello']

Above, when append is used, List 2 retains its list structure and is added on to List 1 as a list

itself. However, when extend is used, the elements of List 2 are separated and appended

individually onto List1. They do not remain in their own sub-list.

The count Method

The count method will give a count of the number of elements in a list. The syntax for the count

method is:

Publication Pending
Author: Dr. Ami Gates

Date: 8/11/2016
All material is subject to copy write laws. Do not post, print, or reproduce without written permission.

 MyList.count(<element>)

Example:

MyList=[1, 0, "bob", 1, 0, 0, [3,4,5], (6, 8.7), "bob"]

MyList

Out[114]: [1, 0, 'bob', 1, 0, 0, [3, 4, 5], (6, 8.7),

'bob']

MyList.count("bob")

Out[115]: 2

MyList.count(0)

Out[116]: 3

MyList.count((6, 8.7))

Out[117]: 1

The insert, remove, and pop methods

In the next example set, the list methods, insert, remove, and pop, will be illustrated. The insert

method allows for the insertion of an element into a list at any location. The insert method

requires two parameters, the location in the list for the insertion (given that the list starts at an

index of 0), and the element to be inserted. Any element can be inserted, including a string, a

number, a list, a tuple, etc.

Syntax for the insert method:

 MyList.insert(index location, element to insert)

The remove method allows for the first occurrence of any element of a list to be removed. The

method requires one parameter, namely the element to be removed.

Syntax for the remove method:

MyList.remove(element)

The pop method allows for the last element of any list to be removed (popped out).

Syntax for the pop method:

 RemovedElement = MyList.pop()

Publication Pending
Author: Dr. Ami Gates

Date: 8/11/2016
All material is subject to copy write laws. Do not post, print, or reproduce without written permission.

Example 7.3.2: Illustration of insert, remove, and pop list methods

AnotherList=["Harry", 7, 7, (8, 9, 10), 4.45, "!!Wow!!"]

AnotherList

Out[85]: ['Harry', 7, 7, (8, 9, 10), 4.45, '!!Wow!!']

AnotherList.insert(1,"Potter")

AnotherList

Out[87]: ['Harry', 'Potter', 7, 7, (8, 9, 10), 4.45, '!!Wow!!']

AnotherList.remove(7)

AnotherList

Out[89]: ['Harry', 'Potter', 7, (8, 9, 10), 4.45, '!!Wow!!']

AnotherList.pop()

Out[92]: '!!Wow!!'

AnotherList

Out[93]: ['Harry', 'Potter', 7, (8, 9, 10), 4.45]

AnotherList.remove((8,9,10))

AnotherList

Out[95]: ['Harry', 'Potter', 7, 4.45]

AnotherList.insert(2, "Goblet")

AnotherList

Out[97]: ['Harry', 'Potter', 'Goblet', 7, 4.45]

The example above starts with a new list called, AnotherList, which contains the string

“Harry”, the integer 7, another integer 7, the tuple (8,9,10), the float 4.45, and the string

"!!Wow!!".

The statement, AnotherList.insert(1,"Potter"), inserts the string "Potter" at index

1. The statement, AnotherList.remove(7), locates and removes the first occurrence of the

integer, 7, from the list. The statement, AnotherList.pop(), removes (pops off the end)

the last element of the list and returns it. In this case, it returns, '!!Wow!!'.

The sort and reverse methods

The next two methods for lists are sort and reverse. The sort method performs an in place

sorting.

Publication Pending
Author: Dr. Ami Gates

Date: 8/11/2016
All material is subject to copy write laws. Do not post, print, or reproduce without written permission.

The syntax for the sort method is:

MyList.sort() #Sort in ascending order

MyList.sort(reverse=True) #Sort in descending order

Sorting numbers works well. However, for lists composed of a variety of types, the sort method

may result in an error or unexpected results.

Sorting Examples:

List1=[3,7,1,9,10,5]

List1.sort()

List1

Out[112]: [1, 3, 5, 7, 9, 10]

List1.sort(reverse=True)

List1

Out[114]: [10, 9, 7, 5, 3, 1]

List2=["a", "y", "r", "e", "w"]

List2.sort()

List2

Out[117]: ['a', 'e', 'r', 'w', 'y']

List3=["bob", "zebra", "apple", "fiddle"]

List3.sort(reverse=True)

List3

Out[120]: ['zebra', 'fiddle', 'bob', 'apple']

List4 = ["bob", "a", "Happy", "z!", "wow??"]

List4.sort()

List4

Out[125]: ['Happy', 'a', 'bob', 'wow??', 'z!']

list5=["!", "?", "%", "$", "#", "@", "*", "&", "^"]

list5.sort()

list5

Out[140]: ['!', '#', '$', '%', '&', '*', '?', '@', '^']

Publication Pending
Author: Dr. Ami Gates

Date: 8/11/2016
All material is subject to copy write laws. Do not post, print, or reproduce without written permission.

List6 = ["bob", 1, 4.56, "!!wow!!"]

List6.sort()

TypeError: unorderable types: int() < str()

In the above examples, numbers can be sorted, and any collection of strings can be sorted.

However, when types are mixed, the sorting can cause an error. Strings (including single

characters) are sorted using the first character in the string. Capital letters sort above (before)

lower case letters, and symbols sort according to their ASCII order.

The reverse Method:

The reverse method is very straight forward and works for all lists including those with various

element types. The reverse method reverses the order of the elements in the list.

The syntax for the reverse method is:

 MyList.reverse()

Example:

List5 = ["bob", "a", "Happy", "z!", "wow??", "!H!", 3.45]

List5.reverse()

List5

Out[147]: [3.45, '!H!', 'wow??', 'z!', 'Happy', 'a', 'bob']

Concatenation and Indexing

Like strings, lists can also be indexed and concatenated.

The syntax for list indexing is:

 MyList=[element1, element2, …, elementN]

 MyList[0]=element1

 MyList[1]=element2

 MyList[-1]=MyList[N-1]=element

 MyList[a:b] = [element[a], …, element[b-1]]

The syntax for list concatenation is:

MyList1 + MyList2

Publication Pending
Author: Dr. Ami Gates

Date: 8/11/2016
All material is subject to copy write laws. Do not post, print, or reproduce without written permission.

Example:

MyList1=[1,2,3]

MyList2=["bob", "fred", (2,5)]

MyList1+MyList2

Out[133]: [1, 2, 3, 'bob', 'fred', (2, 5)]

The colon operator for lists:

The colon “:” operator can be used to access portions of a list.

The syntax for the list colon operator is:

myList[a:b:c]

The “a” is the starting index, “b” is the ending index (which is not included in the final list), and

“c” is the step (the separation between each element). Note that the new list will always include

values up until “b” (the ending index) but not including “b”. It is optional to omit a, b, or c.

Examples:

myList

Out[190]: [10, 20, 30, 40, 50, 60, 70, 80]

myList[0:5:1]

Out[191]: [10, 20, 30, 40, 50]

myList[0:5:2]

Out[192]: [10, 30, 50]

myList[0:5:3]

Out[193]: [10, 40]

myList[:]

Out[194]: [10, 20, 30, 40, 50, 60, 70, 80]

myList[1:3]

Out[195]: [20, 30]

myList[2:]

Out[196]: [30, 40, 50, 60, 70, 80]

Publication Pending
Author: Dr. Ami Gates

Date: 8/11/2016
All material is subject to copy write laws. Do not post, print, or reproduce without written permission.

myList[:2]

Out[197]: [10, 20]

The statement, myList[0:5:1], specifies to start at index “0” (which has the value 10 in

myList), to end at, but not include index 5 (so the last value is myList[4] which is 50), with a

step of “1” (which means do not skip any indices).

The statement, myList[0:5:2] returns the list [10, 30, 50] as it starts at index “0”, ends

before index “5” and the step is “2”, which means “every other value”. Similarly, the statement:

myList[0:5:3], returns the list, [10, 40]. It starts at index 0, ends before index 5, and the step

is 3 (every third value).

Consider the statement, myList[:2]. Here, the starting index is blank and so it defaults to “0”.

The ending index is 2 and so the new list ends before index 2. The step is omitted and so the

default is 1. The result is: [10, 20].

Similarly, the statement, myList[2:], has the starting index at 2. It omits the ending index and

so the default is the entire remainder of list. The step is also omitted and so the default is 1. The

result is: [30, 40, 50, 60, 70, 80].

As a final note, recall that lists are copied by reference, not by copy. List are mutable objects. As

such, to make another true copy of a list so that changes to one list do not affect changes to the

other, the import copy is required as is the method copy.deepcopy(<listname>).

Example: Review of mutable lists and the deepcopy method.

import copy

a = [1,2,3]

c= a

c

Out[214]: [1, 2, 3]

a.append(4)

a

Out[216]: [1, 2, 3, 4]

c

Out[217]: [1, 2, 3, 4]

Notice when a is updated, c is automatically updated.

b=copy.deepcopy(a)

b

Out[219]: [1, 2, 3, 4]

Publication Pending
Author: Dr. Ami Gates

Date: 8/11/2016
All material is subject to copy write laws. Do not post, print, or reproduce without written permission.

a.append(5)

a

Out[221]: [1, 2, 3, 4, 5]

b

Out[222]: [1, 2, 3, 4]

Updates to a do not affect b as it was made via deepcopy

c

Out[223]: [1, 2, 3, 4, 5]

In the example above, c = a. Therefore, c updated automatically when a is updated (because

they both reference the same location in memory). However, using the import copy and the

copy.deepcopy() method, the list b becomes a true copy that is not connected to a or c.

Table 7.3.2 offers a non-exhaustive collection of common list methods.

list.append(x)
Add an object to the end of the list.

list.extend(<list>)

Extend the list by appending all the items in the given list.

list.insert(index, objectname)

Insert an object at a given location (index).

list.remove(objectname)

Remove the first object in the list whose value is the object.

list.pop([index])

Remove the object from the given location (index) of the list, and return it.

list.clear()

Remove all objects from the list. Equivalent to del MyList[:].

list.index(objectname)

Return the index in the list of the first whose value is objectname.

list.count(objectname)

Return the number of times objectname appears in the list.

list.sort()

Sort the objects in the list in place. This is possible as lists are mutable.

list.reverse()

Publication Pending
Author: Dr. Ami Gates

Date: 8/11/2016
All material is subject to copy write laws. Do not post, print, or reproduce without written permission.

Reverse the objects in the list in place.

list.copy()

Make a new copy of the list that does not reference the original

 Table 7.3.2: Common List Methods

7.4: Tuples and Dictionaries

7.4.1: Tuples

A tuple is data structure type in Python. Like a list, a tuple is also a sequence of data. Tuples

(like strings, but unlike lists), are immutable, which is one of the key difference between tuples

and lists. A tuple is a sequence of values, each separated by a comma, and contained in

parentheses. Tuple elements can be of any type, including other tuples. Like lists and strings,

tuples can be indexed and can use the colon operator.

The syntax for a tuple is:

 MyTuple = (element1, element2, …, elementN)

.

Example:

NewTuple=(1, 'bob', 5.67, 3.141592653589793, (3, 4, 5))

NewTuple

Out[313]: (1, 'bob', 5.67, 3.141592653589793, (3, 4, 5))

NewTuple[3]

Out[314]: 3.141592653589793

NewTuple[4]

Out[315]: (3, 4, 5)

NewTuple[2:4]

Out[316]: (5.67, 3.141592653589793)

Because the key difference between a tuple and a list is the immutability of a tuple, tuples are

faster, but not as effective if changes must be made to the sequence. Therefore, if speed is critical

and the sequence will not require changes, a tuple is a better option. Tuples do not offer many of

the methods that lists offer, such as append, remove, sort, reverse, etc., because tuples are

immutable. However, if changes to the elements are likely, such as additions and deletions, a list

is a more versatile option.

Publication Pending
Author: Dr. Ami Gates

Date: 8/11/2016
All material is subject to copy write laws. Do not post, print, or reproduce without written permission.

7.4.2: Dictionaries

A dictionary is an unordered sequence structure in Python that is indexed using “keys”.

Dictionaries use the curly braces, { }, and contain key:value pairs separated by commas. The

order of the elements in a dictionary does not matter as elements are indexed via key and not

location.

The syntax of a dictionary:

 MyDict={Key1:Element1, Key2:Element2, Key3:Element3, …}

Example:

MyDict1={"Firstname":"Bob", "Lastname":"Smith", "Age":28}

MyDict1

Out[155]: {'Age': 28, 'Firstname': 'Bob', 'Lastname':

'Smith'}

MyDict1["Age"]

Out[158]: 28

MyDict1["Firstname"]+ " " + MyDict1["Lastname"]

Out[160]: 'Bob Smith'

MyDict2={1:"One", 2:"Two", "GO":"Three"}

MyDict2[2]

Out[162]: 'Two'

MyDict2["GO"]

Out[163]: 'Three'

MyDict3={0:0, 1:1, 10:2, 11:3, 100:4, 101:5}

MyDict3[10]

Out[166]: 2

Recall that lists (mutable) and tuples (immutable) are sequences of elements that can be indexed

by numbers, or ranges of numbers. For example, suppose MyList=[1,3,5,7], then MyList[1] is

the value 3, and MyList[1:2] is [3,5].

Publication Pending
Author: Dr. Ami Gates

Date: 8/11/2016
All material is subject to copy write laws. Do not post, print, or reproduce without written permission.

A dictionary is also a sequences of values (just like lists, tuples, and strings), but it has a different

structure and indexing method. Specifically, a dictionary can be thought of as an unordered

collection of key:value pairs, where the key acts as the index or locator for the value it is

associated with.

The key itself can be any immutable (unchangeable) type, such as integers or strings. It is also

possible to use a tuple as a key (because tuple are immutable), but only under the circumstance

that the tuple contains only immutable elements, such as number types, strings, or other tuples.

To reiterate and further solidify the difference between mutable and immutable, it is worth

noting that keys in dictionaries cannot be lists because lists can be updated or modified in place

in memory (this is the definition of mutable). However, it would be non-functional for a key to

be modifiable in memory, because if it were, it may no longer associate with the correct value.

This concept is very much like owning a key to your front door. It would not be a good idea to

make this key alterable by any other method. If the key were changed, it would no longer open

the door.

Dictionary Alternatives

Alternative 1: Using the dict function

Dictionaries can also be built using a couple of other methods. The first is a sequence of

key=name pairs and the dict() function, where the keys are strings.

The syntax for the dict function:

 MyDict = dict(<string>=element, <string>=element, …)

Example:

NewDict4=dict(firstname="Freddy", studentID="G123456",

age=21)

NewDict4

Out[349]: {'age': 21, 'firstname': 'Freddy', 'studentID':

'G123456'}

NewDict4["age"]

Out[350]: 21

Alternative 2: Using a List of (key,value) pairs and the dict function

The next option is using a list of (key, value) pairs, where the keys can be numbers or strings.

Publication Pending
Author: Dr. Ami Gates

Date: 8/11/2016
All material is subject to copy write laws. Do not post, print, or reproduce without written permission.

The syntax is:

 MyDict = dict([(key, value), (key2, value2) , …])

For example:

NewDict5=dict([('firsname', "Fred"), ('ID', 3333), (3,

"last")])

NewDict5

Out[352]: {'firsname': 'Fred', 3: 'last', 'ID': 3333}

NewDict5[3]

Out[353]: 'last'

Dictionaries are very versatile data structures. To get an idea of what they can do and how they

work, review the following example. Note also that this example reviews a number of other

concepts covered in the book. It is recommended that you type in, save, and run this example.

Review each line of code to be sure it is clear. Next, make alterations to the program and

evaluate the results.

Example 7.4.1:

DictExample1.py

by Ami Gates

def main():

 #------An empty Dictionary

 EmpDict={"firstname":"empty", "lastname":"empty", "age":"empty"}

 NewDict=CreateDict(EmpDict)

 #------Get info and put it into dict

 Info=input("What information do you need from the dictionary?

(firstname, lastname, or age):")

 GetInfoFromDict(Info,NewDict)

 #-----Sort the dicct keys option

 answer=input("Would you like to see a sorted list of the keys in

the dict?: ")

 if answer[0]=="Y" or answer[0]=="y":

 sortedkeys=SortedDictKeys(NewDict)

 print(sortedkeys)

 #------Remove an element option

 answer2=input("Would you like to remove an item from the dict?: ")

 if answer2[0]=="Y" or answer2[0]=="y":

 whichitem=input("Which key would you like removed? (firstname,

lastname, or age):")

 del NewDict[whichitem]

 #-----Add an element option

 answer2=input("Would you like to add an item to the dict?: ")

Publication Pending
Author: Dr. Ami Gates

Date: 8/11/2016
All material is subject to copy write laws. Do not post, print, or reproduce without written permission.

 if answer2[0]=="Y" or answer2[0]=="y":

 keyname=input("What is the key name?:")

 value=input("What is the value?:")

 NewDict=AddDictItem(NewDict,keyname,value)

 #----print out the finalized dict

 print(NewDict)

###----END OF MAIN---###

This function populations the dict

def CreateDict(EmpDict):

 #print(EmpDict)

 for k, v in EmpDict.items():

 #The items() method will place the key into k and value into v

here

 print("Please enter your ",k, ":")

 nextdata=input()

 EmpDict[k]=nextdata

 #print(EmpDict)

 return EmpDict

#---------------------------------------

This function adds key (k) value (v) pair to the dict

def AddDictItem(dic,k,v):

 new={k:v}

 dic.update(new)

 return dic

#---------------------------------------

This function gets info from the dict based on a key (input1)

def GetInfoFromDict(input1,dict1):

 print(dict1[input1])

#--------------------------------------

This function sorts and returns all dict key names

def SortedDictKeys(dict3):

 getsortedlist=sorted((dict3.keys()))

 return getsortedlist

#--

Calls main to start

main()

The following is a possible input/output for the program above:

Please enter your firstname :

John

Please enter your lastname :

Smith

Please enter your age :

33

What information do you need from the dictionary? (firstname, lastname,

or age):lastname

Smith

Publication Pending
Author: Dr. Ami Gates

Date: 8/11/2016
All material is subject to copy write laws. Do not post, print, or reproduce without written permission.

Would you like to see a sorted list of the keys in the dict?: y

['age', 'firstname', 'lastname']

Would you like to remove an item from the dict?: yes

Which key would you like removed? (firstname, lastname, or age):age

Would you like to add an item to the dict?: Yes

What is the key name?:ID

What is the value?:G23456712

{'firstname': 'John', 'lastname': 'Smith', 'ID': 'G23456712'}

As you review the program and the output above, make note of the function calls, the use of

decision structures, and the methods that can be used with dictionaries. In the next section, the

data structure object, set, will be discussed.

7. 5: Sets and Frozen Sets

In the mathematical sense, a set is a collection or grouping of objects or elements, with no

repeats. Sets are mutable, but they can only contain immutable objects (such as numbers, strings,

tuples, or frozen sets).

The syntax for sets:

 MySet={element, element, …}

In Python, a set is defined as a collection of unordered and immutable objects. Therefore, one

can have a set of numbers or a set of strings, but not a set of lists. Unlike lists, tuples, and

dictionaries, sets are not designed to allow indexed access to individual elements. Instead, sets

allow for the use of methods, such as intersection, union, length, and pop (remove an element).

Sets in the Python work very much like mathematical sets. The following program example will

illustrate the creation and manipulation of sets. A frozen set is a set that cannot be changed; it is

immutable.

Example 7.5.1:

SetExample.py

by Ami Gates

def main():

 set1={1,2,3,4,1,4,3,5,1}

 print("set1 is: ",set1)

 print("The length of set1 is ",len(set1))

 set2={1,2,3}

Publication Pending
Author: Dr. Ami Gates

Date: 8/11/2016
All material is subject to copy write laws. Do not post, print, or reproduce without written permission.

 print("set2 is: ",set2)

 print("The length of set2 is ",len(set2))

 set3={"Fran", "Bob", "Albert"}

 print("set3 is: ",set3)

 print("The length of set3 is ",len(set3))

 print("The intersection between set1 and set2 is ", set1 &

set2)

 print("The union between set1 and set2 is ", set1 | set2)

 print("Is set2 a subset of set1? ", set2 < set1)

 print("Add element 10 to set1 using set1.add(10) to give: ")

 set1.add(10)

 print(set1)

 print("Remove element 1 from set2 using set2.remove(1) to

give: ")

 set2.remove(1)

 print(set2)

 for i in set1:

 print(i+5)

END OF MAIN

main()

 The output for the above program is:

set1 is: {1, 2, 3, 4, 5}

The length of set1 is 5

set2 is: {1, 2, 3}

The length of set2 is 3

set3 is: {'Bob', 'Fran', 'Albert'}

The length of set3 is 3

The intersection between set1 and set2 is {1, 2, 3}

The union between set1 and set2 is {1, 2, 3, 4, 5}

Is set2 a subset of set1? True

Add element 10 to set1 using set1.add(10) to give:

{1, 2, 3, 4, 5, 10}

Remove element 1 from set2 using set2.remove(1) to give:

{2, 3}

6

7

8

9

10

15

Publication Pending
Author: Dr. Ami Gates

Date: 8/11/2016
All material is subject to copy write laws. Do not post, print, or reproduce without written permission.

Notice that “&” is the operator for set intersection and “|” is the operator for set union.

Similarly, “<” is the operator for “is subset of” and the result is True or False. Elements in a set

can be added or removed.

The key difference between a set and a list is that sets do not have duplicated elements (any

duplicates are removed automatically and are not counted in the length) and sets are not and

cannot be indexed. It would not be feasible to have MySet={1,2,3} and then try to access

MySet[1] to get the value 2. Because sets are unordered and do not allow repeats, the elements in

a set are not index able.

Alternatively, the following list: MyList=[1,2,3] is ordered and does allow indexing: MyList[1]

is the value 2. Sets are defined with { } and lists are defined with [].

7.6: Review and Comparison: Strings, Lists, Tuples, Dictionaries, and Sets

Strings, lists, tuples, dictionaries, and sets are all data structure objects in Python that organize

and assist in the manipulation of data. The string class is designed specifically for ordered

sequences of characters (including symbols and numbers). Any word or phrase contained in

quotes is a string. There are several methods and operations available for strings, including

indexing and concatenation. Strings are immutable. This means that once a string is created, it

cannot be changed. Copies of strings do not share memory locations, and changes to strings

result in the creation of a new string in memory. While a string can be any sequence of

characters (including numbers and symbols), strings cannot contain other objects (such as tuples

or lists).

The list class is also an ordered sequence, but unlike strings, lists can be a sequence of any

objects. So a list can contain a set, or a tuple, or a string, or all three. Lists have many built-in

methods and are versatile and flexible. Recall that lists are mutable, which means that if a list is

created, it can be changed, updated, reduced, etc., in place in memory (it is dynamic). In

addition, if another variable is set equal to an existing list, changes to the list affect all variables

that reference it. This can be mitigated by creating a deepcopy.

Tuples are very similar to lists in that they are ordered sequences of anything. However, unlike

lists, tuples are immutable (not dynamic in memory). This makes them faster to operate when

speed is critical. However, it makes them a poor choice for sequences that are likely to change.

Tuples, lists, and strings can all be indexed and can utilize splicing methods, as they are ordered.

Sets and dictionaries are unordered. A dictionary is a collection of key:value pairs where the

value is indexed by the name of its associated key. Dictionaries offer many methods for

updating, organizing, and managing unordered data. Sets are a collection of immutable types

(such as numbers or strings). Sets are not only unordered, but they also cannot contain duplicate

values. Sets in Python are very similar to common mathematical sets, as are the methods that

work on sets, such as union and intersection.

A Note about Arrays and NumPy:

Publication Pending
Author: Dr. Ami Gates

Date: 8/11/2016
All material is subject to copy write laws. Do not post, print, or reproduce without written permission.

NumPy is a package for scientific computing in Python (http://www.numpy.org/). The key data

structure in NumPy is an N-dim array. While arrays and NumPy will not be discussed in this

chapter, we will return to packages and arrays for Python in a later chapter.

http://www.numpy.org/

