
 Ami Gates Book Portion – please do not reprint or post in any location.

Chapter 14: Data Wrangling: Munging, Processing, and Cleaning

Once you have collected data, whether by scraping the Web, using an API, or grabbing it from a more

organized source, the next step is to get the data into a format that is useable for analysis. This

wrangling step can require a considerable amount of time and a large number of operations. Some of

these operations include munging the data; removing rows, adding rows, changing the shape,

discretizing, merging, separating, renaming, etc. Other operations might include cleaning the data;

assuring that values are within expected ranges, removing outliers or incorrect values, normalizing,

removing duplicates, etc.

There are many methods and tools that can be used for data wrangling including visually accessing

portions of the data. To illustrate several such methods and tools, this chapter will first review basic file

input and output (for txt and csv), will introduce Python pandas, will show a few contrived examples to

further illustrate pandas methods, and will offer a Case Study (AirNow) that will progress through

gathering, munging, and cleaning data from start to finish. Following chapters will continue into more

advanced data processing, including binning (discretization), normalization, reductions, and preliminary

visualization.

A Quick Review of File Input and Output

Text Files (.txt)

A text file, ending is .txt, can contain anything – as text.

Example 1: Creating, writing to, and closing a text file

TextFile="MyTextFile.txt"

File1=open(TextFile, "w")

DictText='{"ID":"D1234", "Firstname":"John", "Car":["BMW",

"Honda","Kia"]}\n'

File1.write(DictText)

DictText='{"ID":"D5555", "Firstname":"Benny", "Car":["Ford",

"Mazda","Kia"]}\n'

File1.write(DictText)

File1.close()

Example 2: Open a text file for reading

File1=open(TextFile, "r")

data=File1.read()

print("Entire File Contents ", data)

File1.seek(0)

data=File1.readline(11)

print("Read first line and first 11 chars ", data)

 Ami Gates Book Portion – please do not reprint or post in any location.

File1.seek(0)

data=File1.readlines()

print("Reads until the End of File (EOF) ", data)

Note that seek() will relocate the file pointer to a character location in the file. Therefore, seek(0)

returns the file pointer to the start of the file.

Example 3: Open a text file for appending:

TextFile="MyTextFile.txt"

File1=open(TextFile, "a")

DictText='{"ID":"D7878", "Firstname":"Paul", "Car":["Chevy"]}\n'

File1.write(DictText)

DictText='{"ID":"D9199", "Firstname":"Alan",

"Car":["Mazda","Kia"]}\n'

File1.write(DictText)

File1.close()

File1=open(TextFile, "r")

data=File1.read()

print(data)

print(len(data))

print(type(data))

File1.close()

The length (len) of the data is a count of all characters in the text file. The type of data in this case is

string (str). Because text files contain strings, string manipulation methods and operations can be

applied to the contents of text files.

CSV (Comma Separated Values) Files

To use and manage csv files in Python, be sure to import csv. A csv file contains data that is separated by

a delimiter, such as with commas or tabs.

Example 1: Creating, writing to, and closing a csv file

csvFile="MyCSVFile.csv"

File2=open(csvFile, "w", newline='')

CSVList=(["FirstName", "John", "Lastname", "Smith", "Car", "BMW",

"Zipcode", "20001"])

Fwriter=csv.writer(File2, delimiter=",")

Fwriter.writerow((CSVList[0],CSVList[2],CSVList[4],CSVList[6]))

Fwriter.writerow((CSVList[1],CSVList[3],CSVList[5],CSVList[7]))

 Ami Gates Book Portion – please do not reprint or post in any location.

File2.close()

In this example, the list called CSVList contains the data. The writerow method is used to write data to

each row of the scv file using a comma to delimit each item written.

Example 2: Reading a csv file

File2=open(csvFile, newline='')

Freader=csv.reader(File2, delimiter=",")

for row in Freader:

 print(row)

File2.close()

Each row from a csv file is returned as a list of strings.

The output:

['FirstName', 'Lastname', 'Car', 'Zipcode']

['John', 'Smith', 'BMW', '20001']

Example 3: Reading and writing a csv file using DictReader and DictWriter

The csv module also offers dictionary-based methods called, DictWriter and DictReader. These methods

will read and write csv files using dictionary objects.

import csv

columnNames=['Firstname', 'Car']

Filename="csvFile2.csv"

CSV1=open(Filename,"w", newline='')

writer=csv.DictWriter(CSV1, fieldnames=columnNames)

writer.writeheader()

writer.writerow({"Firstname":"Sally", "Car":"Honda"})

writer.writerow({"Firstname":"Pam", "Car":"Buick"})

CSV1.close()

with open(Filename) as CSV2:

 reader=csv.DictReader(CSV2)

 for line in reader:

 #The dict value for Car will be printed

 print(line["Car"])

CSV2.close()

 Ami Gates Book Portion – please do not reprint or post in any location.

The Output:

Honda

Buick

For more details on reading and writing csv files, https://docs.python.org/3/library/csv.html.

Using Python pandas and dataframes

Python pandas (http://pandas.pydata.org/) is an open source library that offers excellent data

structures, such as the pandas dataframe, as well as a number of analysis tools. The pandas library is

installed with Anaconda and can be used by including the following import statement:

import pandas as pd

The pandas web site (http://pandas.pydata.org/) notes the following quote:

“Python has long been great for data munging and preparation, but less so for data analysis and modeling. pandas helps

fill this gap, enabling you to carry out your entire data analysis workflow in Python without having to switch to a more

domain specific language like R. Combined with the excellent IPython toolkit and other libraries, the environment for

doing data analysis in Python excels in performance, productivity, and the ability to collaborate. pandas does not

implement significant modeling functionality outside of linear and panel regression; for this, look

to statsmodels and scikit-learn. More work is still needed to make Python a first class statistical modeling environment,

but we are well on our way toward that goal.”

The pandas library is often used in conjunction with the NumPy library. NumPy offers an array data

structure. To include NumPy, use the following import statement:

import numpy as np

An Introduction to pandas data structures

The pandas Series

The series is a one-dimensional data structure that can be considered a “labeled” array. It can contain

any data type, such as strings, lists, dictionaries, numerical values, and so on. In pandas, the word axis is

used to denote the current “direction” or “dimension” of the data of interest. In a one-dimensional

series, there is only one axis. However, in a two-dimensional structure (dataframe), axis=0 designates

rows and axis=1 designates columns.

To create a pandas series:

MySeries=pd.Series(Mydata, index=indexvalue)

https://docs.python.org/3/library/csv.html
http://pandas.pydata.org/
http://ipython.org/
http://statsmodels.sf.net/
http://scikit-learn.org/

 Ami Gates Book Portion – please do not reprint or post in any location.

Example 1: Creating a Series

import numpy as np

import pandas as pd

#Create an array from 0 to 4

Mydata=np.arange(5)

#Note the index (row) value names

indexvalue=["C1", "C2", "C3", "C4", "C5"]

MySeries=pd.Series(Mydata, index=indexvalue)

print(MySeries)

The output:

C1 0

C2 1

C3 2

C4 3

C5 4

Example 2: Series and Dictionaries

MyDict={"Name":"Bob", "Age":29, "Degree":"MS"}

print(pd.Series(MyDict))

The Output:

Age 29

Degree MS

Name Bob

Example 3: Series, NumPy Arrays, and Functions

The pandas Series can behave very much like an array.

MyDict2={"Grade1":90.1, "Grade2":88.5, "Grade3":93.6}

MySeries=pd.Series(MyDict2)

print(MySeries)

print("Grade 2 is: ", MySeries[1])

print("The mean of the grades: ",MySeries.mean())

print("Grades plus 5 points added is:\n", MySeries+5)

print("Grade 1 is: ", MySeries.get("Grade1"))

 Ami Gates Book Portion – please do not reprint or post in any location.

The Output:

Grade1 90.1

Grade2 88.5

Grade3 93.6

Grade 2 is: 88.5

The mean of the grades: 90.73

Grades plus 5 points added is:

Grade1 95.1

Grade2 93.5

Grade3 98.6

Grade 1 is: 90.1

The pandas Dataframe

A dataframe is a two-dimensional structure (much like a spreadsheet or table), that is made up or rows

and columns. Each column in a pandas dataframe may be a different type. The index represents the row

labels and the columns represents the column labels. There are several methods for creating

dataframes. The following examples illustrates a few options. For all examples, assume the following:

import pandas as pd

import numpy as np

Example 1: Using Series to create a dataframe

Gradebook={"Student1": pd.Series([89.3, 78.7, 92.2],

index=['Grade1', 'Grade2', 'Grade3']),

 "Student2": pd.Series([77.3, 83.4, 91.8],

index=['Grade1', 'Grade2', 'Grade3']),

 "Student3": pd.Series([97.1, 88.6, 98.5],

index=['Grade1', 'Grade2', 'Grade3'])

 }

GradeBookDF=pd.DataFrame(Gradebook)

print(GradeBookDF)

The Output:

 Student1 Student2 Student3

Grade1 89.3 77.3 97.1

Grade2 78.7 83.4 88.6

Grade3 92.2 91.8 98.5

 Ami Gates Book Portion – please do not reprint or post in any location.

Example 2: Creating an empty dataframe and adding a value

#Create an empty dataframe

Gradebook2 = pd.DataFrame(Gradebook, index=['G1', 'G2', 'G3'],

columns=['Bob Smith', 'Sandy Stern'])

print(Gradebook2)

#Fill in values

Gradebook2.ix["G1","Bob Smith"]=98.1

print(Gradebook2)

Note the use of the .ix (for index). This allows you to specify the row (in this case “G1”) and the column

(in this case “Bob Smith”).

The Output:

 Bob Smith Sandy Stern

G1 NaN NaN

G2 NaN NaN

G3 NaN NaN

 Bob Smith Sandy Stern

G1 98.1 NaN

G2 NaN NaN

G3 NaN NaN

Example 3: Adding a new column to a dataframe

#Create an empty dataframe

Gradebook2 = pd.DataFrame(Gradebook, index=['G1', 'G2', 'G3'],

columns=['Bob Smith', 'Sandy Stern'])

print(Gradebook2)

#Create a new column

Gradebook2["NewColumn"]="NaN"

print(Gradebook2)

The Output

 Bob Smith Sandy Stern NewColumn

G1 NaN NaN NaN

G2 NaN NaN NaN

G3 NaN NaN NaN

 Ami Gates Book Portion – please do not reprint or post in any location.

Example 4: Adding values to dataframes

In this example, the .ix is used to update the ith index (row) and the column called “BobSmith”. Notice

that I have renamed the columns in the Gradebook2 dataframe so that they do not contain spaces.

Rather than Bob Smith, the column name is BobSmith. This allows me to reference the column using the

dot operator: Gradebook2.BobSmith.

import random

for i in range(len(Gradebook2.BobSmith)):

 Gradebook2.ix[i,"BobSmith"]=random.randint(50,100)

print(Gradebook2)

The Output:

 BobSmith SandyStern NewColumn

G1 91 NaN NaN

G2 56 NaN NaN

G3 63 NaN NaN

Example 5: Converting a list of dictionaries into a dataframe and adding a column

MyDict=[{"Name":"Bob", "Age":29, "Degree":"MS"}, {"Name":"Rob",

"Age":34, "Degree":"PhD"}]

DictDF=pd.DataFrame.from_dict(MyDict)

DictDF.insert(2, 'NewColumn', [20007, 23604])

print(DictDF)

The insert method will add a column in location “2” with name, “NewColumn”, and the noted

contents.

The Output:
 Age Degree NewColumn Name

0 29 MS 20007 Bob

1 34 PhD 23604 Rob

Example 6: Removing (dropping) rows and columns from a dataframe

MyDict=[{"Name":"Bob", "Age":29, "Degree":"MS"}, {"Name":"Rob",

"Age":34, "Degree":"PhD"}]

DictDF=pd.DataFrame.from_dict(MyDict)

 Ami Gates Book Portion – please do not reprint or post in any location.

DictDF.insert(2, 'NewColumn', [20007, 23604])

DictDF=DictDF.drop("Degree", axis=1)

print(DictDF)

In this case, the dataframe has a column called “Degree”. This code uses the “drop” method to remove

this column by name. Notice that “axis=1” is included to specify that the axis of interest is “1”, which

represents the column. Note that axis = 0 represents rows. The next code bit will remove row “0” (the

first row) from the dataframe.

MyDict=[{"Name":"Bob", "Age":29, "Degree":"MS"}, {"Name":"Rob",

"Age":34, "Degree":"PhD"}]

DictDF=pd.DataFrame.from_dict(MyDict)

DictDF.insert(2, 'NewColumn', [20007, 23604])

DictDF=DictDF.drop(0)

print(DictDF)

Using pandas with csv files

The pandas dataframe is very versatile and there are many methods and operations related to the

dataframe. One common use of pandas dataframes is to read data from a csv file into a dataframe.

In this next example, we will create our own small csv file and then will read it in as a dataframe.

Example 1: Reading a csv file into a dataframe

csvFile="MyCSVFile3.csv"

File2=open(csvFile, "w", newline='')

Header=(["FirstName", "Lastname", "Grade1", "Grade2", "Grade3"])

Data1=(["John", "Smith", 90.3, 87.5, 77.2])

Data2=(["Bob", "Benson", 88.8, 77.7, 66.6])

Fwriter=csv.writer(File2)

Fwriter.writerow(Header)

Fwriter.writerow(Data1)

Fwriter.writerow(Data2)

File2.close()

csvDataFrame=pd.read_csv(csvFile)

print(csvDataFrame)

The Output:

 FirstName Lastname Grade1 Grade2 Grade3
0 John Smith 90.3 87.5 77.2

1 Bob Benson 88.8 77.7 66.6

 Ami Gates Book Portion – please do not reprint or post in any location.

This same concept can certainly be used for larger or preformed csv files.

Example 2: Reading and writing from dataframe to csv

import csv

import pandas as pd

import random

Gradebook2 = pd.DataFrame(Gradebook, index=['G1', 'G2', 'G3'],

columns=['BobSmith', 'SandyStern'])

for i in range(len(Gradebook2.BobSmith)):

 Gradebook2.ix[i, "BobSmith"]=random.randint(60,100)

 Gradebook2.ix[i, "SandyStern"]=random.randint(60,100)

print("Gradebok2 is:\n", Gradebook2)

#Write Dataframe Gradebook2 into csv

Gradebook2.to_csv("csvGradefile.csv", sep=",", header=True)

#Read dataframe from csv file

Gradebook3=pd.read_csv("csvGradefile.csv", index_col=0)

print("Gradebook3 is:\n", Gradebook3))

The Output:

Gradebok2 is:

 BobSmith SandyStern

G1 90 74

G2 69 73

G3 90 97

Gradebook3 is:

 BobSmith SandyStern

G1 90 74

G2 69 73

G3 90 97

A note on pandas

The Python pandas library is very extensive and contains many further methods and options beyond the

common ones presented above. Manipulating data is dependent on the nature of the data and the goals

of the analysis. The following Case Study offers an example program that makes use of a number of the

methods covered above, as well as the ideas and concepts related to munging and cleaning data.

 Ami Gates Book Portion – please do not reprint or post in any location.

Case Study: Getting, Munging, and Cleaning AirNow Historical Data for Ozone and PM2.5

For this Case Study illustration, I am interested in historical and current measures for Ozone and PM2.5.

The AirNow API URL for this query has the following format:

http://www.airnowapi.org/aq/observation/zipCode/historical/?format=text/csv&zipCode=20002&date=

2014-09-03T00-0000&distance=25&API_KEY=D9AA91E7-070D-4221-867C-EFF5E0D8C2C7

Recall that Chapter 13 offers more detail on the AirNow API, getting a necessary KEY, and using the URLs

to gather data via a post request.

Example 1: Use the AirNow API to gather data.

AirNow API Python Code

Author Ami Gates

AirNowCh14Example.py

import urllib

from urllib.request import urlopen

import pandas as pd

import re

import numpy

def main():

 FileName="AirNowExample.csv"

#Header=['"DateObserved","HourObserved","LocalTimeZone","ReportingArea","StateC

ode","Latitude","Longitude","ParameterName","AQI","CategoryNumber","CategoryNam

e"']

 ziplist=["20007", "90210", "32605", "10001", "97202","33432"]

 datelist=["2004-01-01", "2006-01-01", "2008-01-01","2010-01-01","2012-01-

01","2014-01-01","2016-01-01"]

 GetAirNowData(FileName, ziplist, datelist)

def GetAirNowData(FileName, ziplist,datelist):

##http://www.airnowapi.org/aq/observation/zipCode/historical/?format=text/csv&z

ipCode=20002&date=2014-09-03T00-0000&distance=25&API_KEY=D9AA91E7-070D-4221-

867C-EFF5E0D8C2C7

 ZipDict={}

 #Create a new file - if exists - will delete

 File=open(FileName, "w")

 File.close()

 #----

 #Open for append

 File=open(FileName, "a")

http://www.airnowapi.org/aq/observation/zipCode/historical/?format=text/csv&zipCode=20002&date=2014-09-03T00-0000&distance=25&API_KEY=D9AA91E7-070D-4221-867C-EFF5E0D8C2C7
http://www.airnowapi.org/aq/observation/zipCode/historical/?format=text/csv&zipCode=20002&date=2014-09-03T00-0000&distance=25&API_KEY=D9AA91E7-070D-4221-867C-EFF5E0D8C2C7

 Ami Gates Book Portion – please do not reprint or post in any location.

 baseURL="http://www.airnowapi.org/aq/observation/zipCode/historical/?"

 miles=5

 for zipcode in ziplist:

 for date in datelist:

 zipURL=baseURL + urllib.parse.urlencode({

 'format': "text/csv",

 #'format':'application/json',

 'zipCode':zipcode,

 'date':date+'T00-0000',

 #yyyy-MM-ddThh-mmss"

 'distance':miles,

 'API_KEY':'D9AA91E7-070D-4221-867C-XXXXXXXXXXXXXXXXX'

 })

 #print(zipURL)

 response=urlopen(zipURL).read().decode('utf-8')

 responseCopy=response

 #Build Dict for zip code and city

 ZipDict[str(responseCopy)]=zipcode

 response=response+"\n"

 #response=urlopen(zipURL).read()

 File.write(response)

 File.close()

 #Create a file for the zipcode/city dict for later

 File=open("DictFile.txt","w")

 File.write(str(ZipDict))

 File.close()

main()

The Program above creates a new csv file called AirNowExample.csv. It is important to note that we can

use a csv file here because the AirNow API allows for the option of getting results as text/csv. This is not

always the case. The AirNow API also allows for the results to be returned as JSON or XML. As a word of

warning, if you choose JSON, but run the API many times (as I have done here), the result will produce

JSON code that may require extra steps to load and work with. Because this example will use Python

pandas and dataframes, the election of csv is efficient and effective. Also note that you can load results

into .txt files and then format them in any way that you wish.

Notice that the URL format had to be created perfectly (or the request will not work):

baseURL="http://www.airnowapi.org/aq/observation/zipCode/historical/?"

 miles=5

 for zip in ziplist:

 for date in datelist:

 zipURL=baseURL + urllib.parse.urlencode({

 'format': "text/csv",

 #'format':'application/json',

 'zipCode':zip,

 'date':date+'T00-0000',

 #yyyy-MM-ddThh-mmss"

 'distance':miles,

 Ami Gates Book Portion – please do not reprint or post in any location.

 'API_KEY':'D9AA91E7-070D-4221-867C-XXXXXXXXXXXXXXXXX'

 })

This is true whether using an API or performing a direct scrape with a GET or POST. The

urllib.parse.urlencode method will properly encode the parameters of the post. That being said, if

an error occurs at this point, print out the completed URL and see if it has the correct format.

Notice that this request is made within a double for loop which will request each zip code and each

date combination per the ziplist and datelist variables (both lists) in main(). To purposefully

create extra unclean data (to better illustrate this example), I also specifically used a zip code (32605)

that will not return any data and so will generate missing values. While this data will be cleaner to start

with than say straight HTML data directly scraped from the web, it will still require wrangling, munging,

and cleaning. We will be taking text (due to the way we are collecting the data) and we will have to

remove rows, remove empty values, remove a column, add a column, and re-organize the data. We will

be using regular expressions, csv files, and Python pandas dataframes in this example. The program

above will generate the following csv data file: “AirNowExample.csv” (Figure 1).

Figure1: A preview of the AirNowExample.csv dataset gathered using the AirNow API

Here, you can see that the column labels are repeated. This will have to be changed so that the column

labels only appear one time at the top. Notice also that the zip code is not an element of the data, but I

want it to be. I will have to add it along with a new column. In some rows, there is no data, these will

have to be removed. These are either examples of zipcodes that returned no data or examples of dates

that returned no data. As part of this example, we will also separate the dataset into two datasets, one

for ozone and one for PM2.5.

 Ami Gates Book Portion – please do not reprint or post in any location.

Therefore, even after using an API and expecting clean and organized data, there are still a number of

cleaning and munging steps that will have to take place. It will also be necessary to remove any repeated

elements (if they exist), and to assure that all values fit within an expected range (no outliers or odd

values).

Before the cleaning and munging can begin, however, the next step is to read this data into a format

from which updates to it can be made. There are many options for this. Here, we will use pandas

(Python Data Analysis Library)(http://pandas.pydata.org/). The pandas library is standard in Anaconda

and can be used by importing pandas:

import pandas as pd

Creating the pandas DataFrame

During this next step, the goal is to get the data organized into columns and rows that make sense. From

there, we can be to begin further clean and reorganize the data. By viewing a portion of the data, and

because the code calls the API many times and places all the results into one file, I can see that many

rows in the file are duplicates of the column names. The following code will remove these.

Removing Rows with pandas Drop

#pd is pandas and df is the dataframe

#Header=['"DateObserved","HourObserved","LocalTimeZone","Reportin

gArea","StateCode","Latitude","Longitude","ParameterName","AQI","

CategoryNumber","CategoryName"']

#The full set of code will follow – this is a subsection

df=pd.read_csv("AirNowExample.csv")

 Newdf=df

 #Remove the rows that repeat the headers

 for i in range(len(df.DateObserved)):

 if(df.ix[i,"DateObserved"]) == "DateObserved":

 Newdf=Newdf.drop(i)

Here, a dataframe called, df, is created using pandas (as pd). The results from the data scrape (shown

above using the AirNow API, etc.) are read into the new dataframe from the csv file. Next, a new

dataframe is created as a copy of the current dataframe. This allows us to test changes without affecting

the original dataframe.

In this example, the row labels of the dataframe are integers, starting with “0”. The columns are labeled

with the names listed in the Headers variable above. For example, the first column name is

“DateObserved”.

The goal here is to remove (drop) every row in the dataframe that contains the string “DateObserved”,

because this implies that the row is a duplicate. Non-duplicate rows contain an actual date in this

column (see Figure 1 above).

http://pandas.pydata.org/

 Ami Gates Book Portion – please do not reprint or post in any location.

The line of code,

if(df.ix[i,"DateObserved"]) == "DateObserved":

will determine if the given row with column name “DateObserved” contains the value “DateObserved”.

Note that .ix stands for “index” and represents rows. As such, df.ix [i, “DateObserved”] represents the ith

row with column name “DateObserved”.

If a row contains the string, “DateObserved”, the following code will remove it.

Newdf=Newdf.drop(i)

Figure 2 illustrates a partial image of the new data. Now, the duplicate rows that contain column names

have been removed. Because of the file width, each row is continued below.

Figure 2: The updated AirNow dataset with duplicated column names removed.

Removing Columns

The next step will be to remove columns that are not necessary and do not contain information. In this

case, the only column to remove is “HourObserved” because the value here is always “0”. The line of

code to do this is:

Newdf=Newdf.drop('HourObserved', axis=1)

 Ami Gates Book Portion – please do not reprint or post in any location.

Note that, axis=1, specifies that column axis of the dataframe. The row axis is the default.

Dividing DataFrames and Creating Files

At this point, the data is looking nicer. As a next step, we will take the data and will create two

dataframes, one for “ozone” and one for “PM2.5”. We will re-index both. The code for that is the

following:

#Create two dataframes. Ozone_df and PM25_df

#Assume the Newdf2 is the latest dataframe of the data

 Ozonedf=Newdf2

 PM25df=Newdf2

 for i in range(len(Newdf2.DateObserved)):

 if(Newdf2.ix[i,"ParameterName"]) != "PM2.5":

 PM25df=PM25df.drop(i)

 else:

 Ozonedf=Ozonedf.drop(i)

 #Re-index to start from 0

 Ozonedf=Ozonedf.reset_index(drop=True)

 PM25df=PM25df.reset_index(drop=True)

 #View the current results and dataframe

 File=open("ViewAirFilePM25.txt" , "w")

 File.write(str(PM25df))

 File.close()

 File=open("ViewAirFileOzone.txt" , "w")

 File.write(str(Ozonedf))

 File.close()

In this case, first create two new pandas dataframes. Recall that Newdf2 is our current dataframe that

contains our “cleaner” AirNow data.

Ozonedf=Newdf2

 PM25df=Newdf2

Next, use the for loop to investigate each row of the current dataframe. If the “ParameterName” is not

equal to “PM2.5”, drop the row from the new PM25df. Otherwise drop it from the Ozonedf.

for i in range(len(Newdf2.DateObserved)):

if(Newdf2.ix[i,"ParameterName"]) != "PM2.5":

 PM25df=PM25df.drop(i)

 else:

 Ozonedf=Ozonedf.drop(i)

 Ami Gates Book Portion – please do not reprint or post in any location.

This will result in two new dataframes. The first is PM25df and will contain only PM2.5 results. The other

is Ozonedf and will contain only Ozone results. Next, re-index both and then place the results into two

separate text files for viewing.

#Re-index to start from 0

 Ozonedf=Ozonedf.reset_index(drop=True)

 PM25df=PM25df.reset_index(drop=True)

 #View the current results and dataframe

 File=open("ViewAirFilePM25.txt" , "w")

 File.write(str(PM25df))

 File.close()

 File=open("ViewAirFileOzone.txt" , "w")

 File.write(str(Ozonedf))

 File.close()

Figure 3 below illustrate the current Ozone data file.

Figure3: The current Ozone Dataset from the original AirNow API scrape.

Fixing Outlier Data

At this point, we have good news and interesting news. The good news is that we now have two files,

one with ozone data that is well organized and one with PM2.5 data that is well organized. The

interesting news is that we have two aberrant data values for PM10.

In a large dataset, aberrant values are easy to miss and often must be tested for or avoided. There are

many options for this, depending on how much information you have or can view about the data. Here,

 Ami Gates Book Portion – please do not reprint or post in any location.

the goal is to assure that only Ozone results are placed in the Ozone file and similarly that only PM2.5

results are placed in the PM25 file.

This will require a few more updates to the code.

To do this, update the for loop in the code above to the following:

for i in range(len(Newdf2.DateObserved)):

 if(Newdf2.ix[i,"ParameterName"]) != "PM2.5":

 PM25df=PM25df.drop(i)

 if(Newdf2.ix[i,"ParameterName"]) != "OZONE":

 Ozonedf=Ozonedf.drop(i)

This will assure that anything that is not PM2.5 will be dropped from the PM2.5 file and anything not

OZONE will be dropped from the Ozone file.

At each point in the cleaning and munging process, it is a good idea to see what you have and to make

sure it is what you want. At this point, I determined that my two new files, Ozone and PM25 were not

formatted exactly as I wanted them. First, I want them to have a new column for zipcode that is

correctly associated with the city. Next, I want them to be in dataframe format. I determined that using

.txt files was not as helpful for my goals as using .csv files. I also determined that extra code is required

to build a dictionary of zipcode/city associations so that these can then be added to the Ozone and

PM25 dataframes (and files) later.

The Final Product

The following programming illustrates all the steps required to collect, reorganize, and clean the data. It

begins with using the AirNow API to collect the data and then progresses through several steps to end

up with two datasets (one for Ozone and one for PM2.5) that are ready to use. Follow this Program is a

line by line discussion of the code.

AirNow API Python Code

Author Ami Gates

AirNowCh14Example.py

import urllib

from urllib.request import urlopen

import pandas as pd

import re

import numpy

def main():

 FileName="AirNowExample.csv"

 Ami Gates Book Portion – please do not reprint or post in any location.

#This Header is FYI – it is not used in the code directly

#Header=['"DateObserved","HourObserved","LocalTimeZone","ReportingArea","StateC

ode","Latitude","Longitude","ParameterName","AQI","CategoryNumber","CategoryNam

e"']

 ziplist=["20007", "90210", "32605", "10001", "97202","33432"]

 datelist=["2004-01-01", "2006-01-01", "2008-01-01","2010-01-01","2012-01-

01","2014-01-01","2016-01-01"]

 GetAirNowData(FileName, ziplist, datelist)

 CleanData(FileName, ziplist, datelist)

def GetAirNowData(FileName, ziplist,datelist):

##Note: This is an API format example. You must USE YOUR API KEY

##http://www.airnowapi.org/aq/observation/zipCode/historical/?format=text/csv&z

ipCode=20002&date=2014-09-03T00-0000&distance=25&API_KEY=D9AA91E7-070D-4221-

867C-XXXXXXXXXX

 ZipDict={}

 #Create a new file - if exists - will delete

 File=open(FileName, "w")

 File.close()

 #----

 #Open for append

 File=open(FileName, "a")

 baseURL="http://www.airnowapi.org/aq/observation/zipCode/historical/?"

 miles=5

 for zipcode in ziplist:

 for date in datelist:

 zipURL=baseURL + urllib.parse.urlencode({

 'format': "text/csv",

 #'format':'application/json',

 'zipCode':zipcode,

 'date':date+'T00-0000',

 #yyyy-MM-ddThh-mmss"

 'distance':miles,

#Use YOUR API KEY

 'API_KEY':'D9AA91E7-070D-4221-867C-XXXXXXXXXXXX'

 })

 #print(zipURL)

 response=urlopen(zipURL).read().decode('utf-8')

 responseCopy=response

 #Build Dict for zip code and city

 ZipDict[str(responseCopy)]=zipcode

 response=response+"\n"

 #response=urlopen(zipURL).read()

 File.write(response)

 File.close()

 File=open("DictFile.txt","w")

 File.write(str(ZipDict))

 File.close()

def CleanData(FileName, ziplist, datelist):

 df=pd.read_csv(FileName)

 Ami Gates Book Portion – please do not reprint or post in any location.

 Newdf=df

 #Remove the rows that repeat the headers

 for i in range(len(df.DateObserved)):

 if(df.ix[i,"DateObserved"]) == "DateObserved":

 Newdf=Newdf.drop(i)

 #print(df.ix[i,"DateObserved"])

 #Remove columns that are not needed

 #Remove HourObserved

 Newdf=Newdf.drop('HourObserved', axis=1)

 #Re-index Newdf to start from 0

 Newdf2=Newdf

 Newdf2=Newdf2.reset_index(drop=True)

 #print(Newdf2)

 #Create two new dataframes. Ozonedf and PM25df

 Ozonedf=Newdf2

 PM25df=Newdf2

 #Keep only Ozone data in Ozonedf and PM25 data in PM25df

 #Drop rows that are not wanted...

 for i in range(len(Newdf2.DateObserved)):

 if(Newdf2.ix[i,"ParameterName"]) != "PM2.5":

 PM25df=PM25df.drop(i)

 if(Newdf2.ix[i,"ParameterName"]) != "OZONE":

 Ozonedf=Ozonedf.drop(i)

 #Re-index to start from 0

 Ozonedf=Ozonedf.reset_index(drop=True)

 PM25df=PM25df.reset_index(drop=True)

 #Create two csv files for Ozone and for PM25

 Ozonedf.to_csv("ViewAirFileOzone.csv", index=False)

 PM25df.to_csv("ViewAirFilePM25.csv", index=False)

 #Test the file contents

 PM25df2=pd.read_csv("ViewAirFilePM25.csv")

 Ozonedf2=pd.read_csv("ViewAirFileOzone.csv")

 #Print the values and columns for the data frames

 print(PM25df2.values)

 print(Ozonedf2.columns)

 #Check a couple of columns. Both methods work.

 print(PM25df2[["ReportingArea","AQI"]])

 print(PM25df2.AQI)

 #Printing rows using ix for index. This prints rows 2 through 5

 print(Ozonedf2.ix[2:5])

 #Add a new column to both. Here, I am adding ZipCode as a new column

 # and assigning it values from 0 to dataframe length

 Ozonedf2["ZipCode"]=numpy.arange(len(Ozonedf2))

 PM25df2["ZipCode"]=numpy.arange(len(PM25df2))

 ##Create new values in the new column

 ##First - I will create a dict that contains the values I need...

 Ami Gates Book Portion – please do not reprint or post in any location.

 #Create dict for city and zip using data in file

 #Recall: DictFile.txt was created in GetAirNowData() above

 File=open("DictFile.txt","r")

 ZipData=File.read()

 File.close()

 # The following uses re to find the city and zip

 CityZipDict={}

 MyList=ZipData.split(",")

 counter=0

 for item in MyList:

 counter=counter+1

 if re.match(r".*\:\s\'\d{5}.*",item):

 zipc=re.findall(r".*\:\s\'(.+?)\'",item)

 city=MyList[counter-8]

 #strip the extra quotes from the city values

 city=city[1:-1]

 #zipc is a list of one string so use [0]

 CityZipDict[city]=zipc[0]

 #print (CityZipDict)

 #Use the CityZipDict to place the corrent zipcodes for each city

 for i in range(len(Ozonedf2.DateObserved)):

 #Row i column ReportingArea

 key=(Ozonedf2.ix[i,"ReportingArea"])

 #Set row i column ZipCode to the zip in the CityZipDict

 Ozonedf2.ix[i,"ZipCode"]=(CityZipDict[key])

 for i in range(len(PM25df2.DateObserved)):

 #Row i column ReportingArea

 key=(PM25df2.ix[i,"ReportingArea"])

 #Set row i column ZipCode to the zip in the CityZipDict

 PM25df2.ix[i,"ZipCode"]=(CityZipDict[key])

 #Confirm that Ozonedf2 and PM25df2 have new column called ZipCode

 #with correct values

 print(Ozonedf2)

 print(PM25df2)

 #write the updated dataframes back to files

 Ozonedf2.to_csv("ViewAirFileOzone_2.csv", index=False)

 PM25df2.to_csv("ViewAirFilePM25_2.csv", index=False)

Call to Main

main()

Discussion of the Program for AIrNow Data

The program generates two key datafiles, ViewAirFileOzone_2.csv and

ViewAirFilePM25_2.csv. Figure 4 shows a portion of the ViewAirFilePM25_2.csv file as a

Python preview.

 Ami Gates Book Portion – please do not reprint or post in any location.

Figure 4: Portion of ViewAirFilePM25_2.csv

The next few pages will discuss the program line by line.

Lines 1 - 8

1. # AirNow API Python Code

2. # Author Ami Gates

3. # AirNowCh14Example.py

4. import urllib

5. from urllib.request import urlopen

6. import pandas as pd

7. import re

8. import numpy

Because this program will use numpy arange, I have imported numpy. I have also imported “re” so that

regular expressions can be used. The import pandas is needed to use the pandas dataframes and

variaous dataframe manipulations. The urllib and urllib request and urlopen are used to collect the data.

Lines 9 – 13

9. def main():

10. FileName="AirNowExample.csv"

11.#Header=['"DateObserved","HourObserved","LocalTimeZone","ReportingArea","S

tateCode","Latitude","Longitude","ParameterName","AQI","CategoryNumber","Cate

goryName"']

12. ziplist=["20007", "90210", "32605", "10001", "97202","33432"]

13. datelist=["2004-01-01", "2006-01-01", "2008-01-01","2010-01-01","2012-

01-01","2014-01-01","2016-01-01"]

 Ami Gates Book Portion – please do not reprint or post in any location.

Here the main() function is defined. A file, "AirNowExample.csv" is created. This file will initially

house all calls and results from the AirNow API requests that will be made. Line 11 is not used in the

program and is for information purposes. It notes the column values expected. This information can be

gained from the AirNow API site or by viewing the results. Line 12 is a list of the zipcodes that will be

posted with the request to AirNow. Line 13 is a list of the dates that will be posted with the request to

AirNow. A single URL will be created for each zipcode and date combination using a double for loop. We

will see this shortly.

Lines 14 and 15

 14.GetAirNowData(FileName, ziplist, datelist)

 15.CleanData(FileName, ziplist, datelist)

Two functions will be called from main(). The first function, GetAirNowData, will collect the data

from AirNow and will also create a dictionary that associates zipcode with city name for later use. The

reason why this dictionary must be created is that the results returned from the API requests do not

include the zipcode. However, I would like to add on a column that does include the correct zip code for

each city/location. Therefore, as the data is collected, a dictionary is built that associates zipcode and

location. The second function, CleanData, will mung and clean the data, will use the dictionary of

location/zipcode to create a new column, and will generate two files (one for Ozone and one for PM2.5

data).

Lines 16 - 24

16.def GetAirNowData(FileName, ziplist,datelist):

17.##http://www.airnowapi.org/aq/observation/zipCode/historical/?format=text/

csv&zipCode=20002&date=2014-09-03T00-0000&distance=25&API_KEY=D9AA91E7-070D-

4221-867C-XXXXXXXXXXXXXXXXXX

18. ZipDict={}

19. #Create a new file - if exists - will delete

20. File=open(FileName, "w")

21. File.close()

22. #----

23. #Open for append

24. File=open(FileName, "a")

Line 16 starts the definition for function, . Line 17 is a reminder of the general format for the POST

AirNow API URL. Note that you must use YOUR KEY in place of the fake API_KEY listed here. Line 18

initializes a dictionary called ZipDict. This will be the dictionary that associates zipcodes with city

location names. Lines 20-24 create a new file where the AirNow data will be placed. This will be the raw

data that we will then clean. Note that when opening a file to write , “w”, a new and empty file will be

created. If the file exists, it will be overwritten. Opening for append, “a”, allows new information to be

added to the file without losing current content.

 Ami Gates Book Portion – please do not reprint or post in any location.

Lines 25 - 38

25. baseURL="http://www.airnowapi.org/aq/observation/zipCode/historical/?"

26. miles=5

27. for zipcode in ziplist:

28. for date in datelist:

29. zipURL=baseURL + urllib.parse.urlencode({

30. 'format': "text/csv",

31. #'format':'application/json',

32. 'zipCode':zipcode,

33. 'date':date+'T00-0000',

34. #yyyy-MM-ddThh-mmss"

35. 'distance':miles,

36. 'API_KEY':'D9AA91E7-070D-4221-867C-XXXXX YOUR API KEY HERE'

37. })

38. #print(zipURL)

This portion of the code sets up the URL needed to post the request to the AirNow site. Line 25 is the

“base” URL. Then, lines 27-37 define and format all required parameters for the URL. The

urllib.parse.urlencode method will encode the parameters properly. Notice that line 29

concatenates (via the +) the base URL to the result of the encoding of the parameters. Lines 27 and 28

are the for loops that loop through all zipcodes and dates in the lists defined in main(). A request will be

posted for all combinations of zipcode and date. The format in this case will be text/csv, but JSON and

XML are also options. Line 38 is commented out, but is used to assure that the URL created is in the

correct and expected format.

Lines 39 - 45

39. response=urlopen(zipURL).read().decode('utf-8')

40. responseCopy=response

41. #Build Dict for zip code and city

42. ZipDict[str(responseCopy)]=zipcode

43. response=response+"\n"

44. #response=urlopen(zipURL).read()

45. File.write(response)

Line 39 uses the urlopen method to send the post request URL to the AirNow site. The response

will contain the resulting data. Notice that lines 39-45 are all contained inside of the double for loop and

so will be repeated for each zipcode and date combination. Line 45 writes each request response to the

file (which is why the file was opened for append). Line 42 collects the entire response (a copy of it) and

associates it with the current zipcode. If this is unclear, print a copy of the response to see what it is.

Later in the program, we will have to parse out, using regular expressions, just the city/location from

that entire response. Line 43 includes a newline after each request to make the file easier to parse later.

Lines 46- 49

46. File.close()

 Ami Gates Book Portion – please do not reprint or post in any location.

47. File=open("DictFile.txt","w")

48. File.write(str(ZipDict))

49. File.close()

Line 46 closes the AirNowExample.csv file. Lines 47-49 create a file to store the dictionary results.

This file will be used by the next function.

Lines 50 - 58

50.def CleanData(FileName, ziplist, datelist):

51.#Header=['"DateObserved","HourObserved","LocalTimeZone","ReportingArea","S

tateCode","Latitude","Longitude","ParameterName","AQI","CategoryNumber","Cate

goryName"']

52. df=pd.read_csv(FileName)

53. Newdf=df

54. #Remove the rows that repeat the headers

55. for i in range(len(df.DateObserved)):

56. if(df.ix[i,"DateObserved"]) == "DateObserved":

57. Newdf=Newdf.drop(i)

58. #print(df.ix[i,"DateObserved"])

Line 50 starts the definition of the function, CleanData(FileName, ziplist, datelist).

This function requires the FileName, which in this case is AirNowExample.csv. It also requires the

zip list and date list defined in main(). Line 52 uses pandas (as pd) to create a data frame (called df here).

The method pd.read_csv is used to read the csv file and place the results into a dataframe pandas

object. Line 54 makes a copy of the dataframe so that changes can be made while still maintaining (for

reference) the original dataframe. Lines 55-58 loop through the length (number of rows) of the

dataframe. The code, df.ix[i,"DateObserved"]looks at each row of the dataframe (the index ix)

and the column in that row called “DateObserved”. If the value in row i and column DateObserved is the

string, “DateObserved”, then line 57 will remove (drop) this row from the dataframe. The reason for this

removal is that only the top row should contain the names of the columns. If any other row contains the

column names, it should be eliminated as it is not part of the data. Note that throughout the code there

are print statements and other notes that are commented-out with “#”. These are there for testing

purposes.

Lines 59 – 61

59. #Remove columns that are not needed

60. #Remove HourObserved

61. Newdf=Newdf.drop('HourObserved', axis=1)

Line 61 uses the drop method to remove a column from the dataframe. Within the dataframe is a

column called, “HourObserved”. There is no data for this column and all values are “0”. This column is

not needed and so is dropped.

Lines 62 - 65

 Ami Gates Book Portion – please do not reprint or post in any location.

62. #Re-index Newdf to start from 0

63. Newdf2=Newdf

64. Newdf2=Newdf2.reset_index(drop=True)

65. #print(Newdf2)

Lines 63 and 64 will re-index the new dataframe. In lines 56 and 57 above, certain rows were dropped as

they contained no data and were only duplicates of the column names. When a row is dropped, the

index (the row name) is dropped with it. In this dataframe, there are no explicit row names and so the

indexing is 0, 1, 2, … However, once a row is dropped that index is removed. This creates an index with

missing rows, such as 0, 2, 5, 7…

In this case, we can re-index the rows to start again from 0 and to proceed in order (0, 1, 2, …). Line 64

uses the reset_index method to do this.

Lines 66-78

66. #Create two new dataframes. Ozonedf and PM25df

67. Ozonedf=Newdf2

68. PM25df=Newdf2

69. #Keep only Ozone data in Ozonedf and PM25 data in PM25df

70. #Drop rows that are not wanted...

71. for i in range(len(Newdf2.DateObserved)):

72. if(Newdf2.ix[i,"ParameterName"]) != "PM2.5":

73. PM25df=PM25df.drop(i)

74. if(Newdf2.ix[i,"ParameterName"]) != "OZONE":

75. Ozonedf=Ozonedf.drop(i)

76. #Re-index to start from 0

77. Ozonedf=Ozonedf.reset_index(drop=True)

78. PM25df=PM25df.reset_index(drop=True)

At this point in the program, the dataset has been updated to only contain data (rather than column

header duplicates) and one of the columns has been removed. Lines 66-78 will break the dataframe into

two separate dataframes, one for Ozone and one for PM2.5. This is certainly not required and is just a

preference as well as instructional. To accomplish this task, lines 67 and 68 create two copies of the

current dataframe. Lines 71 – 75 loop through the all rows of current dataframe and drop all entries

from the PM2.5 dataframe that do not contain PM2.5 data and similarly all entries from the Ozone

dataframe that do not contain Ozone data. The result is two new dataframes, Ozonedf and PM25df.

Lines 79 – 87

79. #Create two csv files for Ozone and for PM25

80. Ozonedf.to_csv("ViewAirFileOzone.csv", index=False)

81. PM25df.to_csv("ViewAirFilePM25.csv", index=False)

82. #Test the file contents

83. PM25df2=pd.read_csv("ViewAirFilePM25.csv")

 Ami Gates Book Portion – please do not reprint or post in any location.

84. Ozonedf2=pd.read_csv("ViewAirFileOzone.csv")

85. #Print the values and columns for the data frames

86. print(PM25df2.values)

87. print(Ozonedf2.columns)

Lines 80 and 81 create new scv files in which to store the new dataframes. Lines 83 and 84 test the file

contents by reading the files. Lines 86 and 87 also test the data in the files by printing values and

columns.

Lines 88-90

88. #Check a couple of columns. Both methods work.

89. print(PM25df2[["ReportingArea","AQI"]])

90. print(PM25df2.AQI)

Lines 89 and 90 show examples of how to view specific data in the dataframe. Line 89 will print all the

data contained in the columns named ReportingArea and AQI.

Lines 91 and 92

91. #Printing rows using ix for index. This prints rows 2 through 5

92. print(Ozonedf2.ix[2:5])

Line 92 is a an example of how to view the data in the dataframe by row. The “ix” stands for index or

row. This will print rows 2, 3, 4, and 5.

Lines 93- 96

93. #Add a new column to both. Here, I am adding ZipCode as a new column

94. # and assigning it values from 0 to dataframe length

95. Ozonedf2["ZipCode"]=numpy.arange(len(Ozonedf2))

96. PM25df2["ZipCode"]=numpy.arange(len(PM25df2))

Lines 95 and 96 are the first steps in adding a new zipcode column to the dataframe Ozone (called

Ozonedf2) and to the dataframe PM2.5 (called PM25df2). Recall that the results returned by the AirNow

API did not include the zipcode for the city location. Therefore, the code first created a dictionary that

associated the entire results with the zip code. Below in following lines and with the use of regular

expressions, just the city will be extracted and will be linked to the correct zipcode. Line 95 creates a

new column in the Ozone dataframe and fills the column with numbers from 0 to the length of the

dataframe. Line 96 does the same thing for the PM25 dataframe. If you were to view both dataframes at

this point in the code, you would see that both now have a new column for “ZipCode”. The next step is

to get the proper values to place into the new columns.

Lines 97 - 104

 Ami Gates Book Portion – please do not reprint or post in any location.

97. ##Create new values in the new column

98. ##First - I will create a dict that contains the values I need...

99. #Create dict for city and zip using data in file

100 #Recall: DictFile.txt was created in GetAirNowData() above

101 File=open("DictFile.txt","r")

102 ZipData=File.read()

103 File.close()

104 # The following uses re to find the city and zip

Recall that line 42, ZipDict[str(responseCopy)]=zipcode, in the GetAirNowFunction

(above) created a dictionary that associated the entire results from the response of the URL request

with the zipcode for the request. However, the entire response (responseCopy) now needs to be

searched for the city location. The goal to find the city location for each zip code and create a new

dictionary that associates just the city with the zipcode. Once we have this, we can place the zipcodes

into the dataframes. Line 101 opens the dictionary file created from lines 47 and 48. Line 102 reads that

dictionary into a variable called, ZipData .

Lines 105-107

105 CityZipDict={}

106 MyList=ZipData.split(",")

107 counter=0

Line 105 creates a new dictionary that is empty. Line 106 creates a list of all strings (split by “,”) from

ZipData. Line 107 starts a counter to keep track of progression through the list. The best way to really

see and understand what is going on and why this is necessary is to type in this code and to view the

contents of ZipData.

Lines 108 - 116

108 for item in MyList:

109 counter=counter+1

110 if re.match(r".*\:\s\'\d{5}.*",item):

111 zipc=re.findall(r".*\:\s\'(.+?)\'",item)

112 city=MyList[counter-8]

113 #strip the extra quotes from the city values

114 city=city[1:-1]

115 #zipc is a list of one string so use [0]

116 CityZipDict[city]=zipc[0]

Line 108 loops through all strings (items) in the list called MyList. In MyList is the city location

and the zipcode. The goal is to locate both. Lines 110 and 111 use regular expressions (re) to locate

the zip code. The r" means, “this is the regular expression”.

 r".*\:\s\'\d{5}.*"

 Ami Gates Book Portion – please do not reprint or post in any location.

r".*\:\s\'(.+?)\"

The first regular expression above says: “Find anything any number of times until you find a “ : ”, then

one space, then one ', then 5 digits, and then anything. This will locate all zip codes. The next regular

expression says: “Find anything until you find a “ : “ then one space, then one ',then return the text

that is in that location. This regular expression will return the zipcode. To see why and how, run the code

and investigate.

Line 112 assigns the city location name to the current location (thus the use of the counter) minus 8.

This can be seen by viewing a few lines of the original dictionary of the data.

Line 114 strips the front and end quotes from the string that is the city location name.

Line 116 assignments the city location name to the zipcode using the dictionary, CityZipDict . Note

that zipc[0] is needed because zipc is a list, but we want to assign the string within the list. Again,

to really understand that part of the code, it is best to review the original dictionary contents.

Lines 117 - 128

117 #print (CityZipDict)

118 #Use the CityZipDict to place the corrent zipcodes for each city

119 for i in range(len(Ozonedf2.DateObserved)):

120 #Row i column ReportingArea

121 key=(Ozonedf2.ix[i,"ReportingArea"])

122 #Set row i column ZipCode to the zip in the CityZipDict

123 Ozonedf2.ix[i,"ZipCode"]=(CityZipDict[key])

124 for i in range(len(PM25df2.DateObserved)):

125 #Row i column ReportingArea

126 key=(PM25df2.ix[i,"ReportingArea"])

127 #Set row i column ZipCode to the zip in the CityZipDict

128 PM25df2.ix[i,"ZipCode"]=(CityZipDict[key])

Lines 119 – 123 loop through the Ozone dataframe by row. The value in each row under

“ReportingArea” (which is the city location) is saved as variable, key. Next, the column called “ZipCode”

(for each row) is filled in with the correct zipcode that matches the city location key.

Lines 124-128 do the same thing, but for the PM2.5 dataframe. The idea here is that we have now

added a new column to the dataframe. For each city location, we add the correct zip code. We can do

this because we first created a dictionary that associated all city locations to zipcodes.

Lines 129 - 136

129 #Confirm that Ozonedf2 and PM25df2 have new column called ZipCode

130 #with correct values

 Ami Gates Book Portion – please do not reprint or post in any location.

131 print(Ozonedf2)

132 print(PM25df2)

133 #write the updated dataframes back to files

134 Ozonedf2.to_csv("ViewAirFileOzone_2.csv", index=False)

135 PM25df2.to_csv("ViewAirFilePM25_2.csv", index=False)

#Call to main

136 main()

Lines 131 and 132 confirm the contents of the two new dataframes, Ozonedf2 and PM25df2. Lines 134

and 135 write these dataframes to two csv files for further processing. Line 136 calls main and starts the

program.

Comments and Notes

The above program and all related portions are only one small example of grabbing data from the web,

munging and cleaning the data, and created usable data files from the data that can then be submitted

to analysis and investigation.

